Solutions of diophantine equations with coefficients in Gaussian integers using electronic spreadsheets
DOI:
https://doi.org/10.35819/remat2020v6i2id4150Keywords:
Greatest Common Divisor, Diophantine Equations, Gaussian Integers, Euclidean Domains, Spreadsheet SolutionAbstract
In this work we study necessary and sufficient conditions for a linear diophantine equation over an euclidean domain to have a solution. We present a series of algorithms (functions) that can be implemented in spreadsheets (for example LibreOffice Calc, Microsoft Excel, etc.), in order to determine (if any) solutions for Diophantine equations over Z[i].
Downloads
References
ANDERSON, M.; FEIL, T. A First Course in Abstract Algebra: Rings, Groups and Fields. 3. ed. New York: CRC Press, 2015.
GATHEN, J. V. Z.; GERHARD, J. Modern Computer Algebra. 3. ed. New York: Cambridge University Press, New York, 2013.
HEFEZ, A. Aritmética. 2. ed. Rio de Janeiro: SBM-Coleção PROFMAT, 2016.
JESUS, O. F. de. O Uso de Planilhas do Excel Aplicadas a Tópicos de Geometria Analítica. 2018. 243f. Dissertação (Mestrado em Matemática) - Programa de Mestrado Profissional em Matemática em rede Nacional, Universidade Federal de Goias, Regional de Jataí, Jataí, 2018.
LIBREOFFICE. Funções de suplemento (add-in), lista das funções de análise - parte 2. LibreOffice Help. Disponível em: https://help.libreoffice.org/3.3/Calc/Add-in_Functions,_List_of_Analysis_Functions_Part_Two/pt-BR. Acesso em: 17 mar. 2020.
MILIES, C. F. P. M.; COELHO, S. P. Números: Uma Introdução à Matemática. 3. ed. São Paulo: USP, 2001.
SANTOS, L. A. dos. Equações diofantinas lineares: um aplicativo para a resolução. 2016. 65f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Universidade Estadual Paulista, Guaratinguetá, 2016.
SEMATIC SCHOLAR. Solution of simple diophantine equations by means of MATLAB. Disponível em: https://www.semanticscholar.org/paper/SOLUTION-OF-SIMPLE-DIOPHANTINE-EQUATIONS-BY-MEANS/6ec1d1d98bb1044fb0683540474b3dadca04bfe0. Acesso em: 25 set. 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 REMAT: Revista Eletrônica da Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.