Solução exata para equações diferenciais parciais baseado em simetrias de Lie pela regra de exponencial de operadores
DOI:
https://doi.org/10.35819/remat2024v10i2id6913Palavras-chave:
simetrias de Lie, exponencial de operadores, equação diferencial parcial, solução exataResumo
Neste trabalho, apresenta-se o método da exponencial de operadores, que consiste em uma técnica para resolver equações diferenciais parciais (EDPs) que envolvem operadores lineares com a característica de invariância. Partindo da ideia baseada nas simetrias de Lie, propõe-se uma representação de uma solução em termos de uma exponencial de um operador linear, que é obtida através da expansão da exponencial em uma série de potências e do uso de uma técnica de aproximação para lidar com cada termo da série. Essa técnica envolve a decomposição do operador em uma soma de dois ou mais operadores simples, que podem ser resolvidos de forma exata e, portanto, sem a necessidade de se falar sobre análise de convergência, estabilidade ou erros envolvidos na aproximação dos operadores diferenciais envolvidos. Resolvem-se cinco equações diferencias parciais de primeira ordem, verificando o caráter exato das soluções encontradas, além da ilustração das mesmas em forma gráfica.
Downloads
Referências
BOYCE, W. E.; DIPRIMA, R. C.; MEADE, Douglas B. Equações Diferenciais Elementares e Problemas de Valores de Contorno. 11. ed. Rio de Janeiro: LTC, 2010.
DATTOLI, G.; MANCHO, A. M.; QUATTROMINI, M.; TORRE, A. Exponential operators, generalized polynomials and evolution problems. Radiation Physics and Chemistry, [s. l.], v. 61, n. 2, p. 99-108, 2001. DOI: https://doi.org/10.1016/S0969-806X(00)00426-6.
IBRAGIMOV, N. H. Elementary Lie Group Analysis and Ordinary Differential Equations. 2. ed. New York: John Wiley & Sons, 1999.
GEORGI, H. Lie Algebras In Particle Physics: from Isospin To Unified Theories. 1. ed. Cambridge: Cambridge University Press, 2000. DOI: https://doi.org/10.1201/9780429499210.
GILMORE, R. Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge: Cambridge University Press, 2008.
OLVER, P. J. Applications of Lie Groups to Differential Equations. 2. ed. New York: Springer-Verlag, 1987.
ZEE, A. Group theory in a nutshell for physicists. New Jersey: Princeton University Press, 2016.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de acesso aberto: A REMAT é uma revista de acesso aberto, o que implica que todo o seu conteúdo está acessível sem custo para o usuário ou sua instituição. Os leitores têm permissão para visualizar, fazer download, copiar, distribuir, imprimir, pesquisar ou vincular aos textos completos dos artigos, bem como usá-los para qualquer outra finalidade legal, sem a necessidade de solicitar autorização prévia da revista ou dos autores. Essa declaração alinha-se com a definição de acesso aberto estabelecida pela Budapest Open Access Initiative (BOAI).