Uma versão espacial do modelo de crescimento econômico AK
DOI:
https://doi.org/10.35819/remat2023v9i2id6708Palavras-chave:
modelo AK espacial, equações diferenciais parciais, Séries de Fourier, crescimento econômico, ecologia matemáticaResumo
Neste trabalho propomos uma generalização espacial do modelo de crescimento econômico AK em uma dimensão espacial, o qual é descrito matematicamente por uma equação diferencial parcial parabólica linear para o capital per capita da economia, com as correspondentes condições iniciais e de contorno. Obtemos soluções em série de Fourier para o modelo considerando condições de contorno de Dirichlet homogêneas, de Neumann homogêneas e mistas homogêneas, e apresentamos exemplos numéricos do modelo. Mostramos que o modelo com condições de Neumann homogêneas constitui generalização espacial natural do modelo AK não-espacial. Além disso, encontramos valores críticos mínimos para a taxa de poupança da economia, de forma a garantir o crescimento persistente do capital per capita no longo prazo, com as condições de Neumann homogêneas apresentando o menor valor, independente do tamanho geográfico da economia, seguido das condições do tipo mistas e Dirichlet homogêneas, com o valor mínimo dependendo inversamente do tamanho geográfico da economia nestes dois últimos casos. Por fim, o modelo AK espacial aqui proposto constitui exemplo interessante de aplicação de equações diferenciais parciais na área de Economia.
Downloads
Referências
ARAKI, T.; MOLLO NETO, M. Explorando a construção computacional de sinais periódicos contínuos como combinação linear de sinais senoidais harmonicamente relacionados. Revista Engenho, v. 5, n. 8, p. 1-24, 2013. Disponível em: https://revistas.anchieta.br/index.php/RevistaEngenho/article/view/832. Acesso em: 28 dez. 2023.
AURAY, S.; EYQUEM, A.; JOUNEAU-SION, F. Wars and capital destruction. Journal of Economic Dynamics and Control, v. 41, p. 224-240, 2014. DOI: https://doi.org/10.1016/j.jedc.2014.01.023.
BARRO,R. J.; SALA-I-MARTIN, X. Economic growth. 2. ed. Cambridge, Massachusetts: The MIT Press, 2004.
BOUCEKKINE, R.; CAMACHO, C.; FABBRI, G. Spatial dynamics and convergence: The spatial AK model. Journal of Economic Theory, v. 148, n. 6, p. 2719-2736, 2013. DOI: https://doi.org/10.1016/j.jet.2013.09.013.
BOUCEKKINE, R.; FABBRI, G.; FEDERICO, S.; GOZZI, F. Growth and agglomeration in the heterogeneous space: a generalized AK approach. Journal of Economic Geography, v. 19, n. 6, p. 1287-1318, 2019. Disponível em: https://ideas.repec.org/a/oup/jecgeo/v19y2019i6p1287-1318..html. Acesso em: 28 dez. 2023.
BALLESTRA, L. V. The spatial AK model and the Pontryagin maximum principle. Journal of Mathematical Economics, v. 67, p. 87-94, 2016. Disponível em: https://ideas.repec.org/a/eee/mateco/v67y2016icp87-94.html. Acesso em: 28 dez. 2023.
BOYCE, W. E.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. Trad.: Valéria de Magalhães Iório. 9. ed. Rio de Janeiro: LTC Editora, 2010.
BRITO, P. A Spatial Solow Model with Unbounded Growth. Universidade Técnica de Lisboa. 2005. Disponível em: https://api.semanticscholar.org/CorpusID:123735483. Acesso em: 28 dez. 2023.
CAMACHO, C.; ZOU, B. The spatial Solow model. Economics Bulletin, v. 18, n. 2, p. 1-11, 2004. Disponível em: https://ideas.repec.org/a/ebl/ecbull/eb-04r10001.html. Acesso em: 28 dez. 2023.
CHAPRA, S. C. Métodos numéricos aplicados com MATLAB para engenheiros e cientistas. 3. ed. Porto Alegre: AMGH Editora, 2013.
COBB, C. W.; DOUGLAS, P. H. A Theory of Production. American Economic Review, v. 18, n. 1, p. 139-165, 1928.
FARLOW, S. J. Partial differential equations for scientists and engineers. New York: Dover Publications, 2016.
FEIGENBAUM, J. ; LEE, J.; MEZZANOTTI, F. Capital Destruction and Economic Growth: The Effects of Sherman's March, 1850-1920. American Economic Journal: Applied Economics, v. 14, n. 4, p. 301-342, 2022. DOI: https://doi.org/10.1257/app.20200397.
FIGUEIREDO, D. G. de. Análise de Fourier e Equações Diferenciais. Projeto Euclides. 3. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 1997.
HU, H.; LAI, S. Spatio-Temporal Dynamics of the Spatial AK Model with Trade Costs. Journal of Mathematical Finance, v. 11, n. 3, p. 398-415, 2021. DOI: https://doi.org/10.4236/jmf.2021.113023.
IÓRIO, V. de M. EDP:um curso de graduação. 2. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 2001.
JONES, C. I. Introdução à teoria do crescimento econômico. Rio de Janeiro: Elsevier, 2000.
JUCHEM NETO, J. P.; CLAEYSSEN, J. C. R. Capital-Induced Labor Migration in a Spatial Solow Model. Journal of Economics, v. 115, p. 25-47, 2015. DOI: https://doi.org/10.1007/s00712-014-0404-6.
KIERSTEAD, H.; SLOBODKIN, L. B. The size of water masses containing plankton blooms. Journal of Marine Research, v. 12, n. 1, p. 141-147, 1953. Disponível em: https://elischolar.library.yale.edu/journal_of_marine_research/788. Acesso em: 28 dez. 2023.
KOT, M. Elements of mathematical ecology. Cambridge, United Kingdom: Cambridge University Press, 2003.
MURRAY, J. D. Mathematical Biology: I. An Introduction. v. 17. 3. ed. New York: Springer-Verlag, 2002.
SKELLAM, J. G. Random dispersal in theoretical populations. Biometrika, v. 38, n. 1-2, p. 196-218, 1951. DOI: https://doi.org/10.2307/2332328.
SOLOW, R. M. A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, v. 70, n. 1, p. 65-94, 1956. DOI: https://doi.org/10.2307/1884513.
SWAN, T. W. Economic Growth and Capital Accumulation. Economic Record, v. 32, n. 2, p. 334-361, 1956. DOI: https://doi.org/10.1111/j.1475-4932.1956.tb00434.x.
ZILL, D. G.; CULLEN, M. R. Equações Diferenciais. v. 2. 3. ed. São Paulo: Pearson Education do Brasil, 2014.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 REMAT: Revista Eletrônica da Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de acesso aberto: A REMAT é uma revista de acesso aberto, o que implica que todo o seu conteúdo está acessível sem custo para o usuário ou sua instituição. Os leitores têm permissão para visualizar, fazer download, copiar, distribuir, imprimir, pesquisar ou vincular aos textos completos dos artigos, bem como usá-los para qualquer outra finalidade legal, sem a necessidade de solicitar autorização prévia da revista ou dos autores. Essa declaração alinha-se com a definição de acesso aberto estabelecida pela Budapest Open Access Initiative (BOAI).