A spatial version of the AK model of economic growth

Authors

DOI:

https://doi.org/10.35819/remat2023v9i2id6708

Keywords:

spatial AK model, partial differential equations, Fourier Series, economic growth, mathematical ecology

Abstract

In this work, we propose a unidimensional spatial generalization of the AK model of economic growth, which is mathematically described by a parabolic linear partial differential equation for the per capita capital of the economy, with corresponding initial and boundary conditions. We obtain Fourier series solutions for the model, considering homogeneous Dirichlet, homogeneous Neumann, and homogenous mixed boundary conditions, and present numerical examples of the model. We show that the model with homogeneous Neumann boundary conditions is a natural spatial generalization for the non-spatial AK model. Besides, we find minimum critical values for the saving rate of the economy that guarantee persistent growth of the per capita capital in the long run, with homogeneous Neumann conditions presenting the lowest value, regardless of the geographical size of the economy, followed by mixed and homogeneous Dirichlet-type conditions, with the minimum value inversely depending on the geographic size of the economy in these last two cases. Finally, the spatial AK model proposed here is an interesting example of application of partial differential equation in the field of Economics.

Downloads

Download data is not yet available.

Author Biography

References

ARAKI, T.; MOLLO NETO, M. Explorando a construção computacional de sinais periódicos contínuos como combinação linear de sinais senoidais harmonicamente relacionados. Revista Engenho, v. 5, n. 8, p. 1-24, 2013. Disponível em: https://revistas.anchieta.br/index.php/RevistaEngenho/article/view/832. Acesso em: 28 dez. 2023.

AURAY, S.; EYQUEM, A.; JOUNEAU-SION, F. Wars and capital destruction. Journal of Economic Dynamics and Control, v. 41, p. 224-240, 2014. DOI: https://doi.org/10.1016/j.jedc.2014.01.023.

BARRO,R. J.; SALA-I-MARTIN, X. Economic growth. 2. ed. Cambridge, Massachusetts: The MIT Press, 2004.

BOUCEKKINE, R.; CAMACHO, C.; FABBRI, G. Spatial dynamics and convergence: The spatial AK model. Journal of Economic Theory, v. 148, n. 6, p. 2719-2736, 2013. DOI: https://doi.org/10.1016/j.jet.2013.09.013.

BOUCEKKINE, R.; FABBRI, G.; FEDERICO, S.; GOZZI, F. Growth and agglomeration in the heterogeneous space: a generalized AK approach. Journal of Economic Geography, v. 19, n. 6, p. 1287-1318, 2019. Disponível em: https://ideas.repec.org/a/oup/jecgeo/v19y2019i6p1287-1318..html. Acesso em: 28 dez. 2023.

BALLESTRA, L. V. The spatial AK model and the Pontryagin maximum principle. Journal of Mathematical Economics, v. 67, p. 87-94, 2016. Disponível em: https://ideas.repec.org/a/eee/mateco/v67y2016icp87-94.html. Acesso em: 28 dez. 2023.

BOYCE, W. E.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. Trad.: Valéria de Magalhães Iório. 9. ed. Rio de Janeiro: LTC Editora, 2010.

BRITO, P. A Spatial Solow Model with Unbounded Growth. Universidade Técnica de Lisboa. 2005. Disponível em: https://api.semanticscholar.org/CorpusID:123735483. Acesso em: 28 dez. 2023.

CAMACHO, C.; ZOU, B. The spatial Solow model. Economics Bulletin, v. 18, n. 2, p. 1-11, 2004. Disponível em: https://ideas.repec.org/a/ebl/ecbull/eb-04r10001.html. Acesso em: 28 dez. 2023.

CHAPRA, S. C. Métodos numéricos aplicados com MATLAB para engenheiros e cientistas. 3. ed. Porto Alegre: AMGH Editora, 2013.

COBB, C. W.; DOUGLAS, P. H. A Theory of Production. American Economic Review, v. 18, n. 1, p. 139-165, 1928.

FARLOW, S. J. Partial differential equations for scientists and engineers. New York: Dover Publications, 2016.

FEIGENBAUM, J. ; LEE, J.; MEZZANOTTI, F. Capital Destruction and Economic Growth: The Effects of Sherman's March, 1850-1920. American Economic Journal: Applied Economics, v. 14, n. 4, p. 301-342, 2022. DOI: https://doi.org/10.1257/app.20200397.

FIGUEIREDO, D. G. de. Análise de Fourier e Equações Diferenciais. Projeto Euclides. 3. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 1997.

HU, H.; LAI, S. Spatio-Temporal Dynamics of the Spatial AK Model with Trade Costs. Journal of Mathematical Finance, v. 11, n. 3, p. 398-415, 2021. DOI: https://doi.org/10.4236/jmf.2021.113023.

IÓRIO, V. de M. EDP:um curso de graduação. 2. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 2001.

JONES, C. I. Introdução à teoria do crescimento econômico. Rio de Janeiro: Elsevier, 2000.

JUCHEM NETO, J. P.; CLAEYSSEN, J. C. R. Capital-Induced Labor Migration in a Spatial Solow Model. Journal of Economics, v. 115, p. 25-47, 2015. DOI: https://doi.org/10.1007/s00712-014-0404-6.

KIERSTEAD, H.; SLOBODKIN, L. B. The size of water masses containing plankton blooms. Journal of Marine Research, v. 12, n. 1, p. 141-147, 1953. Disponível em: https://elischolar.library.yale.edu/journal_of_marine_research/788. Acesso em: 28 dez. 2023.

KOT, M. Elements of mathematical ecology. Cambridge, United Kingdom: Cambridge University Press, 2003.

MURRAY, J. D. Mathematical Biology: I. An Introduction. v. 17. 3. ed. New York: Springer-Verlag, 2002.

SKELLAM, J. G. Random dispersal in theoretical populations. Biometrika, v. 38, n. 1-2, p. 196-218, 1951. DOI: https://doi.org/10.2307/2332328.

SOLOW, R. M. A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, v. 70, n. 1, p. 65-94, 1956. DOI: https://doi.org/10.2307/1884513.

SWAN, T. W. Economic Growth and Capital Accumulation. Economic Record, v. 32, n. 2, p. 334-361, 1956. DOI: https://doi.org/10.1111/j.1475-4932.1956.tb00434.x.

ZILL, D. G.; CULLEN, M. R. Equações Diferenciais. v. 2. 3. ed. São Paulo: Pearson Education do Brasil, 2014.

Published

2023-12-29

Issue

Section

Mathematics

How to Cite

JUCHEM NETO, João Plínio. A spatial version of the AK model of economic growth. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 9, n. 2, p. e3010, 2023. DOI: 10.35819/remat2023v9i2id6708. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6708.. Acesso em: 22 nov. 2024.

Similar Articles

1-10 of 326

You may also start an advanced similarity search for this article.