Extensión de la secuencia Leonardo: Tetra-Leonardo, Penta-Leonardo y Hexa-Leonardo
DOI:
https://doi.org/10.35819/remat2024v10i2id6922Palabras clave:
extensión, forma matricial, función generadora, secuencia de LeonardoResumen
La presente investigación presenta como objetivo ampliar la secuencia de Leonardo, abarcando ahora las secuencias Tetra-Leonardo, Penta-Leonardo y Hexa-Leonardo. Este estudio aborda de manera integral varios teoremas y propiedades asociados con estas nuevas secuencias, proporcionando una comprensión más profunda y completa. Además, se investigan a fondo las representaciones matriciales y las funciones generadoras de estos números, lo que representa una importante contribución matemática al campo de las secuencias de Leonardo. En el contexto de futuros trabajos, se busca aplicar estas secuencias en el ámbito de la enseñanza, posibilitando discusiones más profundas en los cursos de formación inicial de profesores de Matemáticas. Esto tiene el potencial de enriquecer el contenido pedagógico y promover una comprensión más sólida de las secuencias matemáticas entre los futuros educadores.
Descargas
Referencias
ALP, Y.; KOÇER, E. G. Hybrid Leonardo numbers. Chaos, Solitons & Fractals, [s. l.], v. 150, p. 111128, 2021a. DOI: https://doi.org/10.1016/j.chaos.2021.111128.
ALP, Y.; KOÇER, E. G. Some Properties of Leonardo Numbers. Konuralp Journal of Mathematics, [s. l.], v. 9, n. 1, p. 183-189, 2021b. Disponível em: https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/31496/848006. Acesso em: 12 ago. 2024.
CATARINO, P.; BORGES, A. On Leonardo numbers. Acta Mathematica Universitatis Comenianae, Slovak Republic, v. 89, n. 1, p. 75-86, 2020. Disponível em: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1005. Acesso em: 12 ago. 2024.
CAMINHA, A. Sequências Recorrentes Lineares. Revista da Olimpíada de Matemática do Estado de Goiás, Goiânia, n. 4, p. 84-90, 2003. Disponível em: https://files.cercomp.ufg.br/weby/up/1170/o/SeqRecorrentes.pdf. Acesso em: 12 jul. 2024.
FEINBERG, M. Fibonacci-Tribonacci. The Fibonacci Quarterly, Califórnia, v. 1, n. 1, p. 70-74, 1963. Disponível em: https://www.fq.math.ca/Scanned/1-3/feinberg.pdf. Acesso em: 12 jul. 2024.
GOMES, C. Funções geradoras, funções que contam! Nível 3. In: SEMANA OLÍMPICA, 24., 7-13 nov. 2021, Teresina, PI. Anais [...]. [S. l.]: Olimpíada Brasileira de Matemática, 2021. p. 1-8. Disponível em: https://www.obm.org.br/semana/24a-semana-olimpica. Acesso em: 12 jul. 2024.
SHANNON, A. G. A note on generalized Leonardo numbers. Note on Number Theory and Discrete Mathematics, [s. l.], v. 25, n. 3, p. 97-101, 2019. DOI: https://doi.org/10.7546/nntdm.2019.25.3.97-101.
VIEIRA, R. P. M.; ALVES, F. R. V.; CATARINO, P. M. M. C. Relações bidimensionais e identidades da sequência de Leonardo. Revista Sergipana de Matemática e Educação Matemática, [s. l.], v. 4, n. 2, p. 156-173, 2019. DOI: https://doi.org/10.34179/revisem.v4i2.11863.
VIEIRA, R. P. M.; MANGUEIRA, M. C. dos S.; ALVES, F. R. V.; CATARINO, P. M. M. C. A forma matricial dos números de Leonardo. Ciência e Natura, Santa Maria, v. 42, p. 1-6, 2020. DOI: https://doi.org/10.5902/2179460X41839.
VIEIRA, R. P. M.; MANGUEIRA, M. C. dos S.; ALVES, F. R. V.; CATARINO, P. M. M. C. Os números hiperbólicos de Leonardo. Cadernos do IME - Série Matemática, [s. l.], v. 17, p. 113-124, 2021. DOI: https://doi.org/10.12957/cadmat.2021.58185.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 REMAT: Revista Eletrônica da Matemática
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
REMAT conserva los derechos de autor de los artículos publicados, teniendo derecho a la primera publicación del trabajo, mención de la primera publicación en la revista en otros medios publicados y distribución de partes o del trabajo en su conjunto con el fin de promover la revista.
Esta es una revista de acceso abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin solicitar permiso previo a la revista o al autor. Esta declaración está de acuerdo con la definición de BOAI de acceso abierto.