Caracterização geométrica de operadores lineares de R² e R³
DOI:
https://doi.org/10.35819/remat2015v1i1id1163Palabras clave:
Operadores Lineares, Teoria de Jordan, ClassesResumen
A pesquisa é resultado do trabalho de conclusão de curso de Érick Scopel, sob orientação dos professores Nicolau Matiel Lunardi Diehl e Rodrigo Sychocki da Silva. O trabalho teve por objetivo apresentar uma caracterização geométrica de operadores lineares de R² e R³. Através da Teoria de Jordan aplicada a matrizes associadas aos operadores, pode-se caracterizar as transformações lineares, observando as matrizes quadradas de ordem dois, quando o operador fosse em R², e quadradas de ordem três quando fosse em R³. A partir de Bueno (2006) e Lima (2012) foi obtida uma matriz de Jordan que pudesse ser equivalente à matriz associada ao operador possibilitando assim inferir como o operador influenciava determinadas regiões do plano ou do espaço. A partir da teoria escreveram-se os operadores lineares de um modo que tornasse possível organizá-los em classes. Além disso, mostrou-se no trabalho que os operadores lineares têm diversas aplicações práticas, tais como: Estudo de Fractais, Deformações, Morfismos e Computação Gráfica. Na Computação Gráfica, por exemplo, a teoria dos operadores lineares é utilizada na manipulação de imagens que envolvem rotações, cisalhamentos, dilatação e compressão, alteração de cores, que são todos exemplos de transformações lineares. Através de uma proposta metodológica de acordo com Gil (2010), fundamentada na pesquisa bibliográfica, mostra-se no trabalho que os operadores lineares de R² e R³ atuam como dilatações, compressões, cisalhamentos e rotações, quando se observa os vetores na base de Jordan.
Descargas
Referencias
GIL, A. C. Como elaborar projetos de pesquisa. 5. ed. São Paulo: Ática, 2010. 185 p.
LIMA. E. L. Álgebra Linear. 8. ed. Rio de Janeiro: IMPA, 2012. (Coleção Matemática Universitária).
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2015 REMAT: Revista Eletrônica da Matemática
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
REMAT conserva los derechos de autor de los artículos publicados, teniendo derecho a la primera publicación del trabajo, mención de la primera publicación en la revista en otros medios publicados y distribución de partes o del trabajo en su conjunto con el fin de promover la revista.
Esta es una revista de acceso abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin solicitar permiso previo a la revista o al autor. Esta declaración está de acuerdo con la definición de BOAI de acceso abierto.