Numerical simulation of an incompressible laminar flow in a square lid-driven cavity
DOI:
https://doi.org/10.35819/remat2024v10i1id6757Keywords:
numerical simulation, incompressible laminar flow, lid-driven square cavity, finite differences, semi-implicitAbstract
A numerical simulation of an incompressible laminar flow inside a lid-driven square cavity is carried out in this work. For this purpose, a two-dimensional mathematical model based on the vorticity-stream function formulation of the Navier-Stokes equations is deduced and then discretized on a computational mesh using the Finite Differences method. For the resolution of the discretized equations from the initial and boundary conditions of the problem, a computational code based on a semi-implicit iterative process is implemented in the Matlab software and is available in the text. From this code, simulations are made for incompressible flows with Reynolds numbers 100, 400 and 1000. The code validation is done through comparisons of numerical results obtained with reference results available in the literature. Analyzes resulting from the simulation show that the flows cause the creation of a large recirculation zone near the center of the cavity and two smaller ones in the lower corners, whose intensity and size depend directly on the corresponding Reynolds number.
Downloads
References
ABNT. Associação Brasileira de Normas Técnicas. Norma Técnica ABNT NBR ISO 5167-1:2008. Medição de vazão de fluidos por dispositivos de pressão diferencial, inserido em condutos forçados de seção transversal circular. Rio de Janeiro: ABNT, 2008. Disponível em: https://www.abntcatalogo.com.br. Acesso em: 3 mar. 2023.
BEYA, B. B.; LILI, T. Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity. Comptes Rendus: Mécanique, v. 336, n. 11-12, p. 863-872, 2008. DOI: http://dx.doi.org/10.1016/j.crme.2008.10.004.
BRUNEAU, C.-H.; SAAD, M. The 2D lid-driven cavity problem revisited. Computers & Fluids, v. 35, n. 3, p. 326-348, 2006. DOI: http://dx.doi.org/10.1016/j.compfluid.2004.12.004.
BUK JUNIOR, L. Estudo numérico do escoamento ao redor de um cilindro fixo. Orientador: José Augusto Penteado Aranha. 2007. 67 f. Dissertação (Mestrado em Engenharia Mecânica) - Escola Politécnica, Universidade de São Paulo, 2007. DOI: https://doi.org/10.11606/D.3.2007.tde-12072007-160644.
BURDEN, R. L.; FAIRES, J. D.; BURDEN, A. M. Numerical Analysis. 10. ed. Boston: Cengage Learning, 2015.
CALIXTRATO, M. P.; CAMPOS, P. A. C.; MARIANO, F. P. Análise
numérica do problema da cavidade com tampa deslizante usando o OpenFoam. In: CONGRESSO BRASILEIRO INTERDISCIPLINAR EM CIÊNCIA E TECNOLOGIA, 1., 2020, evento online. Anais [...]. Recife: Even3, 2023. DOI: https://doi.org/10.29327/142544.
CHORIN, A. J. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, v. 22, n. 104, p. 745–762, 1968. DOI: https://doi.org/10.2307/2004575.
CHORIN, A. J. The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society, v. 73, n. 6, p. 928-931, 1967. DOI: https://doi.org/10.1090/S0002-9904-1967-11853-6.
BORTOLI, Á. L. de. Introdução à Dinâmica de Fluidos Computacional. Porto Alegre: Editora da UFRGS, 2000.
FORTUNA, A. de O. Técnicas Computacionais para Dinâmica dos Fluidos: Conceitos Básicos e Aplicações. São Paulo: Editora da Universidade de São Paulo, 2000.
GHIA, U.; GHIA, K. N.; SHIN, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, v. 48, n. 3, p. 387-411, 1982. DOI: http://dx.doi.org/10.1016/0021-9991(82)90058-4.
GRIEBEL, M.; DORNSHEIFER, T.; NEUNHOEFFER, T. Numerical Simulation in Fluid Dynamics: A Practical Introduction. Philadelphia: SIAM, 1997.
GUPTA, M. M.; KALITA, J. C. A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation. Journal of Computational Physics, v. 207, n. 1, p. 52-68, 2005. DOI: http://dx.doi.org/10.1016/j.jcp.2005.01.002.
HERNÁNDEZ, J. E. R.; MARTINS, S. B. C.; BARROS, A. M.; SPHAIER,
S. H. Estudo comparativo de diferentes métodos de desacoplamento pressão-velocidade nas equações de Navier-Stokes. In: CONGRESSO BRASILEIRO DE ENGENHARIA MECÂNICA, 15., 1999, Águas de Lindóia. Anais [...]. São Paulo: ACBM, 1999. Disponível em: https://www.abcm.org.br/anais/cobem/1999/pdf/Aacjfb.pdf. Acesso em: 21. mar. 2024.
HOU, S.; ZOU Q.; CHEN, S.; DOOLEN, G.; COGLEY, A. C. Simulation of cavity flow by the Lattice Boltzmann method. Journal of Computational Physics, v. 118, n. 2, p. 329-347, 1995. DOI: http://dx.doi.org/10.1006/jcph.1995.1103.
JUUJÄRVI, H.; KINNUNEN, I. Lid driven cavity flow using
stencil-based numerical methods. Uppsala, Suécia: UPPSALA Universitet, 2022. Disponível em: https://www.diva-portal.org/smash/get/diva2:1668016/FULLTEXT01.pdf. Acesso em: 18 jun. 2023.
KOSEFF, J. R.; STREET, R. L. On End Wall Effects in a Lid-Driven Cavity Flow. Journal of Fluids Engineering, v. 106, n. 4, p. 385-389, 1984. DOI: https://doi.org/10.1115/1.3243135.
KOSEFF, J. R.; STREET, R. L. The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations. Journal of Fluids Engineering, v. 106, n. 4, p. 390-398, 1984. DOI: http://dx.doi.org/10.1115/1.3243136.
KOSEFF, J. R.; STREET, R. L. Visualization Studies of a Shear Driven Three-Dimensional Recirculating Flow. Journal of Fluids Engineering, v. 106, n. 4, p. 21-27, 1984. DOI: https://doi.org/10.1115/1.3242393.
LIBERZON, A.; FELDMAN, Y.; GELFGAT, A. Y. Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity. Physics of Fluids, v. 23, n. 8, p. 084106-1-084106-7, 2011. DOI: http://dx.doi.org/10.1063/1.3625412.
MALISKA, C. R. Transferência de Calor e Mecânica dos Fluidos Computacional. 2. ed. São Paulo: Livros Técnicos e Científicos, 2004.
MARCHI, C. H.; SUERO, R.; ARAKI, L. K. The lid-driven square cavity flow: numerical solution with a 1024 x 1024 grid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 31, n. 3, p. 186-198, 2009. DOI: http://dx.doi.org/10.1590/s1678-58782009000300004.
MARTINS, A. M. Análise da qualidade de tensões obtidas na simulação de escoamentos de fluidos viscoelásticos usando a formulação log-conformação. Orientador: Nilo Sérgio Medeiros Cardozo. 2016. 80 f. Dissertação (Mestrado em Engenharia) - Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016. Disponível em: http://hdl.handle.net/10183/156814. Acesso em: 28 fev. 2024.
NAVIER, C. L. M. H. Mémoire sur les lois du Mouvement des Fluides. Mémoires de l'Académie Royale des Sciences de l'Institut de France, v. 6, p. 389-440, 1827.
POISSON, S. D. Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides. Journal de L'Ecole Polytechnique, v. 13, p. 1-174, 1831.
PRASAD, A. K.; KOSEFF, J. R. Reynolds number and end-wall effects on a lid-driven cavity flow. Physics of Fluids A, v. 1, n. 2, p. 208–218, 1989. DOI: https://doi.org/10.1063/1.857491.
SEIBOLD, B. A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular domains. Massachusetts Institute of Technology, 2008. Disponível em: https://math.mit.edu/~gs/cse/codes/mit18086_navierstokes.pdf. Acesso em: 15 set. 2022.
SEIBT, F. M.; RAZERA, A. L.; VARELA, D. J. C.; FONSECA, R. J. C.; ROCHA, L. A. O.; DOS SANTOS, E. D.; ISOLDI, L. A. Constructal design de uma aleta triangular inserida em uma cavidade de placa superior móvel com escoamento por convecção mista. Revista Interdisciplinar de Pesquisa em Engenharia, v. 2, n. 32, p. 72-84, 2016. Disponível em: https://periodicos.unb.br/index.php/ripe/article/view/14426. Acesso em: 21 mar. 2024.
STOKES, G. G. On the Theories of the Internal Friction of Fluids in Motion and of the Equilibrium and Motion of Elastic Solids. Transactions of the Cambridge Philosophical Society, v. 8, p. 287-319, 1845.
VANKA, S. P. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. Journal of Computational Physics, v. 65, n. 1, p. 138-158, 1986. DOI: http://dx.doi.org/10.1016/0021-9991(86)90008-2.
WANG, J.; WAN, D. Parallel Simulation of 3D Lid-driven Cubic Cavity Flows by Finite Element Method. In: INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, 21., 2011, Maui, Hawaii, USA. Anais [...]. Mountain View: International Society of Offshore and Polar Engineers, 2011. p. 644-651. Disponível em: https://dcwan.sjtu.edu.cn/userfiles/ISOPE-I-11-019.pdf. Acesso em: 21 mar. 2024.
ZDANSKI, P. S. B.; ORTEGA, M. A.; FICO JR., N. G. C. R. Numerical study of the flow over shallow cavities. Computers & Fluids, v. 32, n. 7, p. 953-974, 2003. DOI: http://dx.doi.org/10.1016/s0045-7930(02)00067-1.
ZHANG, J. Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes. Computers & Mathematics with Applications, v. 45, n. 1-3, p. 43-52, 2003. DOI: http://dx.doi.org/10.1016/s0898-1221(03)80006-8.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.