Teorema de Rouché e aplicações
DOI:
https://doi.org/10.35819/remat2015v1i1id1164Keywords:
Aplicações, Números Complexos, Teorema de Rouché, Teoria de Cauchy, SingularidadesAbstract
A pesquisa é resultado do trabalho de conclusão de curso de Lucas Pinto Dutra, sob orientação dos professores Nicolau Matiel Lunardi Diehl e Rodrigo Sychocki da Silva. Na ocasião da pesquisa apresentou-se uma demonstração do Teorema de Rouché. Algumas aplicações do teorema também foram exploradas ao longo do trabalho. O método utilizado para a realização foi a pesquisa bibliográfica, de acordo com a proposta de Gil (2010), possibilitando que o estudo ocorresse a partir da teoria existente sobre os conteúdos explorados. Fundamentado em Lins Neto (2012) e Soares (2014), o trabalho apresentou algumas noções preliminares de números complexos e funções de variável complexa, além das concepções da Teoria de Cauchy e de singularidades, as quais foram necessárias no decorrer do estudo sobre o teorema central explorado na pesquisa. Mostrou-se que o Teorema de Rouché é uma importante ferramenta de variáveis complexas sendo possível através dele enumerar os zeros de funções complexas em determinadas regiões. A partir do Teorema de Rouché foi possível obter uma demonstração simples para o Teorema Fundamental da Álgebra. Ainda como aplicação do teorema em questão, estudou-se sobre a existência de ponto fixo para funções complexas holomorfas em uma bola de raio um.
Downloads
References
LINS NETO, A. Funções de uma variável complexa. 2. ed. Rio de Janeiro: IMPA, 2012. 468 p.
SOARES, M. G. Cálculo em uma variável complexa. 5. ed. Rio de Janeiro: IMPA, 2014. 196 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 REMAT: Revista Eletrônica da Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.