Acciones y representaciones de semigrupoides inversos
DOI:
https://doi.org/10.35819/remat2023v9i1id6174Palabras clave:
Grupoide, Semigrupoide Inverso, Acciones de Semigrupoide Inverso, Representaciones de Semigrupoide InversoResumen
Mostraremos que existe una correspondencia exacta entre acciones parciales de un grupoide G sobre un conjunto X y acciones de semigrupoide inverso del semigrupoide inverso de Exel S(G) sobre X. Nosotros también definimos representaciones de semigrupoide inverso en relación a un espacio de Hilbert H, así como el C*-álgebra grupoide parcial de Exel C*_p(G), y demostramos que existe una correspondencia exacta entre representaciones parciales de grupoide de G sobre H, representaciones de semigrupoide inverso de S(G) sobre H y representaciones de C*-álgebra de C*_p(G) sobre H.
Descargas
Referencias
ABADIE, Fernando. On partial actions and groupoids. Proceedings of the American Mathematical Society, v. 132, n. 4, p. 1037-1047, 2004. DOI: https://doi.org/10.1090/S0002-9939-03-07300-3.
BAGIO, Dirceu; FLORES, Daiana; PAQUES, Antonio. Partial actions of ordered groupoids on rings. Journal of Algebra and its Applications, v. 9, n. 3, p. 501-517, 2010. DOI: https://doi.org/10.1142/S021949881000404X.
BAGIO, Dirceu; PAQUES, Antonio. Partial groupoid actions: globalization, Morita theory, and Galois theory. Communications in Algebra, v. 40, n. 10, p. 3658-3678, 2012. DOI: https://doi.org/10.1080/00927872.2011.592889.
BAGIO, Dirceu. Partial actions of inductive groupoids on rings. International Journal of Mathematics, Game Theory, and Algebra, v. 20, n. 3, p. 247, 2011.
BAGIO, Dirceu; PINEDO, Hector. Globalization of partial actions of groupoids on nonunital rings. Journal of Algebra and Its Applications, v. 15, n. 5, p. 1650096, 2016. DOI: https://doi.org/10.1142/S0219498816500961.
BAGIO, Dirceu; PINEDO, Hector. On the separability of the partial skew groupoid ring. São Paulo Journal of Mathematical Sciences, v. 11, n. 2, p. 370-384, 2017. DOI: https://doi.org/10.1007/s40863-017-0068-6.
BUSS, Alcides; MEYER, Ralf. Inverse semigroup actions on groupoids. Rocky Mountain Journal of Mathematics, v. 47, n. 1, p. 53-159, 2017. DOI: https://doi.org/10.1216/RMJ-2017-47-1-53.
CORTES, Wagner. On groupoids and inverse semigroupoids actions. Unpublished manuscript, 2018.
CORTES, Wagner. TAMUSIUNAS, Thaisa. A characterisation for a groupoid Galois extension using partial isomorphisms. Bulletin of the Australian Mathematical Society, v. 96, n. 1, p. 59-68, 2017. DOI: https://doi.org/10.1017/S0004972717000077.
DEWOLF, Darien; PRONK, Dorette. The Ehresmann-Schein-Nambooripad theorem for inverse categories. Theory and Applications of Categories, v. 33, n. 27, p. 813–831, 2018. Available in: http://www.tac.mta.ca/tac/volumes/33/27/33-27.pdf. Accessed in: 15 July 15, 2022.
DOKUCHAEV, Michael; EXEL, Ruy. Associativity of crossed products by partial actions, enveloping actions and partial representations. Transactions of the American Mathematical Society, v. 357, n. 5, p. 1931-1952, 2005. DOI: https://doi.org/10.1090/S0002-9947-04-03519-6.
DOKUCHAEV, Michael. Partial actions: a survey. In: MILIES, César Polcino (Org.). Groups, Algebras and Applications: XVIII Latin American Algebra Colloquium. Contemporary Mathematics, American Mathematical Society, v. 537, p. 173-184, 2011. ISBN 08-2185-239-6.
EXEL, Ruy. Circle actions on C*-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence. Journal of Functional Analysis, v. 122, n. 2, p. 361-401, 1994. DOI: https://doi.org/10.1006/jfan.1994.1073.
EXEL, Ruy. Partial actions of groups and actions of inverse semigroups. Proceedings of the American Mathematical Society, v. 126, n. 12, p. 3481-3494, 1998. DOI: https://doi.org/10.1090/S0002-9939-98-04575-4.
EXEL, Ruy; VIEIRA, Felipe. Actions of inverse semigroups arising from partial actions of groups. Journal of mathematical analysis and applications, v. 363, n. 1, p. 86-96, 2010. DOI: https://doi.org/10.1016/j.jmaa.2009.08.001.
GILBERT, Nicholas David. Actions and expansions of ordered groupoids. Journal of Pure and Applied Algebra, v. 198, n. 1-3, p. 175-195, 2003. DOI: https://doi.org/10.1016/j.jpaa.2004.11.006.
KELLENDONK, Johannes; LAWSON, Mark V. Partial actions of groups. International Journal of Algebra and Computation, v. 14, n. 1, p. 87-114, 2004. DOI: https://doi.org/10.1142/S0218196704001657.
LAWSON, Mark; MARGOLIS, Stuart; STEINBERG, Benjamin. Expansions of inverse semigroups. Journal of the Australian Mathematical Society, v. 80, n. 2, p. 205-228, 2006. DOI: https://doi.org/10.1017/S1446788700013082.
LIU, Veny. Free inverse semigroupoids and their inverse subsemigroupoids. Advisor: Jon M. Corson. 2016. Dissertation (Ph.D. in Philosophy in Mathematics) - The University of Alabama, 2016. Available in: https://ir.ua.edu/handle/123456789/2693. Accessed in: 15 July 15, 2022.
RENAULT, Jean. A groupoid approach to C*-algebras. Lecture Notes in Mathematics. v. 793. Berlin: Springer, 1980, 164 p. ISBN 35-4009-977-8.
RENAULT, Jean; SKANDALIS, Georgers. The ideal structure of grupoid crossed product C*-algebras. Journal of Operator Theory, v. 25, n. 1, p. 3-36, 1991. Available in: http://www.jstor.org/stable/24718790. Accessed in: 15 July 15, 2022.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 REMAT: Revista Eletrônica da Matemática
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
REMAT conserva los derechos de autor de los artículos publicados, teniendo derecho a la primera publicación del trabajo, mención de la primera publicación en la revista en otros medios publicados y distribución de partes o del trabajo en su conjunto con el fin de promover la revista.
Esta es una revista de acceso abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin solicitar permiso previo a la revista o al autor. Esta declaración está de acuerdo con la definición de BOAI de acceso abierto.