Integration in finite terms: the Liouville principle and the Ostrowski method

Authors

DOI:

https://doi.org/10.35819/remat2024v10i1id6556

Keywords:

elementary integration, integration in finite terms, Liouville principle, Liouville theorem, Ostrowski theorem

Abstract

Since the beginnings of Differential and Integral Calculus, many mathematicians have dedicated years of their lives to the development of this subject. They improved several techniques for computing the integrals of various classes of functions, but there were some of them that they could not calculate in terms of elementary functions (functions expressed by a finite number of polynomials, radicals, exponentials, logarithms, and trigonometric functions, using a finite amount of algebraic operations and function compositions). A question then arose about whether such integrals were in fact elementary. This led to the French mathematician Joseph Liouville developing a theory of integration in finite terms. In this paper, we presenting Liouville's brilliant reasoning and a generalization proposed by Ukrainian mathematician Alexander Ostrowski. Besides that, we will also be displaying possible applications of their results in the calculation of some integrals.

Downloads

Download data is not yet available.

Author Biography

References

ABEL, N. H. Précis d'une theorie des fonctions elliptiques. Journal für die reine und angewandte Mathematik, v. 4, p. 236-277, 1829. Disponível em: http://eudml.org/doc/183143. Acesso em: 11 mar. 2024.

CHERRY, G. W. Integration in Finite Terms with Special Functions: the Error Function. Journal of Symbolic Computation, v. 1, n. 3, p. 283-302, set. 1985.

CHURCHILL, R. V. Variáveis complexas e suas aplicações. São Paulo: McGraw-Hill, 1975.

FIGUEIREDO, D. G. de. Números irracionais e transcendentes. Rio de Janeiro: SBM, 1985.

GONÇALVES, A. Introdução à álgebra. Rio de Janeiro: Impa, 1979.

HARDY, G. H. The Integration of Functions of a Single Variable. 2. ed. Cambridge: Cambridge University Press, 1916. Disponível em: https://archive.org/details/cu31924001539570. Acesso em: 11 mar. 2024.

HEFEZ, A. Curso de álgebra. v. 2, versão preliminar, 2002. Disponível em: https://docplayer.com.br/175412716-Curso-de-algebra-volume-ii-versao-preliminar-abramo-hefez.html. Acesso em: 22 jan. 2023.

KAUR, Y.; SRINIVASAN, V. R. Integration in Finite Terms: Dilogarithmic Integrals. Applicable Algebra in Engineering, Communication and Computing, v. 34, p. 539-551, jun. 2021. DOI: https://doi.org/10.1007/s00200-021-00518-3.

LIOUVILLE, J. Mémoire sur l’intégration d’une casse des fonctions transcendentes. Journal für die reine und angewandte Mathematik, v. 13, p. 93-118, 1835. DOI: https://doi.org/10.1515/crll.1835.13.93.

MAMEDE, R. Funções sem primitiva elementar. 2013. Disponível em: https://pt.scribd.com/document/364150706/Funcao-sem-primitiva-pdf#. Acesso em: 19 jan. 2023.

MORAES FILHO, D. C. de. “Professor, qual é a primitiva de ?” (O problema de integração em termos finitos). Revista Matemática Universitária, n. 31, p. 143-161, dez. 2001. Disponível em: https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n31_Artigo05.pdf. Acesso em: 11 mar. 2024.

OSTROWSKI, M. A. Sur l'intégrabilité élémentaire de quelques classes d'expressions. Commentarii Mathematici Helvetici, v. 18, p. 283-308, 1945. DOI: https://doi.org/10.1007/BF02568114.

RISCH, R. H. The problem of integration in finte therms. Transactions of the American Mathematical Society, v. 139, p. 167-189, maio 1969. DOI: https://doi.org/10.2307/1995313.

RITT, J. F. Integration in finite therms: Liouville’s theory of elementary methods. New York: Columbia University Press, 1948.

ROSENLICHT, M. A. Liouville’s theorem on functions with elementary integrals. Pacific Journal of Mathematics, v. 24, n. 1, p. 153-161, 1968. DOI: https://doi.org/10.2140/pjm.1968.24.153.

Published

2024-03-14

Issue

Section

Mathematics

How to Cite

SILVA, Allan Kenedy Santos. Integration in finite terms: the Liouville principle and the Ostrowski method. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 10, n. 1, p. e3004, 2024. DOI: 10.35819/remat2024v10i1id6556. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6556.. Acesso em: 22 nov. 2024.

Similar Articles

21-30 of 295

You may also start an advanced similarity search for this article.