Gaussian integral by Taylor series and applications

Autores/as

DOI:

https://doi.org/10.35819/remat2021v7i2id4330

Palabras clave:

Gaussian Integral, Special Functions, Fractional Derivative

Resumen

In this paper, we present a solution for a specific Gaussian integral. Introducing a parameter that depends on a n index, we found out a general solution inspired by the Taylor series of a simple function. We demonstrated that this parameter represents the expansion coefficients of this function, a very interesting and new result. We also introduced some Theorems that are proved by mathematical induction. As a test for the solution presented here, we investigated a non-extensive version for the particle number density in Tsallis framework, which enabled us to evaluate the functionality of the method. Besides, solutions for a certain class of the gamma and factorial functions are derived. Moreover, we presented a simple application in fractional calculus. In conclusion, we believe in the relevance of this work because it presents a solution for the Gaussian integral from an unprecedented perspective.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

Referencias

ARFKEN, G. B.; WEBER, H. J. Mathematical Methods for Physicists. New York: Academic Press, 2005.

BOAS, M. L. Mathematical methods in the physical sciences. New Jersey: John Wiley & Sons, 2006.

CONRAD, K. T. The Gaussian Integral, 2013. Available in: https://www.semanticscholar.org/paper/THE-GAUSSIAN-INTEGRAL-Conrad/4687538f80e333c175691d627dc1254eef3605f8. Access in: 2020.

DAVIS, P. J. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz. The American Mathematical Monthly, v. 66, p. 847-869, 1959.

GREINER, W. Quantum Mechanics: An Introduction. Berlin: Springer, 1990.

GREINER, W. Thermodynamics and Statistical Mechanics. Berlin: Springer, 1995.

GRONAU, D. Why is the gamma function so as it is? Teaching Mathematics and Cumputer Science, v. 1, p. 43-53, 2003.

HERNANDEZ, S. M. Termodinàmica i Mecànica estadìstica. London: Lulu, 2015.

LAPLACE, P. S. Théorie Analytiques des Probabilités. Paris: Courcier, 1820.

OLIVEIRA, E. C.; MACHADO, J. A. T. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering, v. 2014, p. 1-6, 2014.

PATHRIA, R. K. Statistical Mechanics. Oxford: Butterworth-Heinemann, 1996.

PESSAH, M. E.; TORRES, D. F.; VUCETICH, H. Statistical mechanics and the description of the early universe. (I). Foundations for a slightly non-extensive cosmology. Physica A, v. 297, p. 164-200, 2001.

RILEY, K. F.; HOBSON, M. P.; BENCE , S. J. Mathematical Methods for Physics and Engineering. Cambridge: Cambridge University Press, 2006.

SAKURAI, J. J. Modern Quantum Mechanics. New York: Addison-Wesley, 1985.

SALINAS, S. R. A. Introduction to Statistical Physics. New York: Springer, 2001.

SHEN, K. M.; ZHANG, B. W.; WANG, E. K. Generalized ensemble theory with non-extensive statistics. Physica A, v. 487, p. 215-224, 2017.

SPIEGEL, M. R. ; SCHILLER, J. ; SRINIVASAN, R. A. Schaum's Outline of Probability and Statistics. New York: McGraw-Hill, 2001.

STAHL, S. The Evolution of the Normal Distribution. Mathematics Magazine, v. 79, n. 2, p. 96-113, 2006.

STIGLER, S. M. Laplace's 1774 memoir on inverse probability. Statistical Science, v. 1, p. 359-378, 1986.

STURM, J. K. F. Cours d'Analyse de l’école polytechnique. Paris: Mallet-Bachelier, 1857.

TSALLIS, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, v. 52, p. 479-487, 1988.

WEISSTEIN, E. W. Gaussian integral. From MathWorld-A Wolfram Web Resource. Available in: http://mathworld.wolfram.com/GaussianIntegral.html. Access in: 2020.

WEISSTEIN, E. W. Hypergeometric Function. From MathWorld-A Wolfram Web Resource. Available in: https://mathworld.wolfram.com/HypergeometricFunction.html. Access in: 2020.

Descargas

Publicado

2021-07-01

Número

Sección

Matemática

Cómo citar

Gaussian integral by Taylor series and applications. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 7, n. 2, p. e3001, 2021. DOI: 10.35819/remat2021v7i2id4330. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4330.. Acesso em: 18 nov. 2024.

Artículos similares

1-10 de 35

También puede Iniciar una búsqueda de similitud avanzada para este artículo.