Local controllability for a Lotka-Volterra model

Authors

DOI:

https://doi.org/10.35819/remat2024v10i1id6923

Keywords:

mathematical modeling, controllability, Lotka-Volterra model

Abstract

In this article, we apply the tools of mathematical controllability theory in biological models. The approximation method around equilibrium solutions was used to study the local controllability of Lotka-Volterra systems, which model population dynamics between prey and predator species. We performed an analysis to determine if specific problems of the Lotka-Volterra type have the property of local controllability, which is guaranteed for certain equilibrium points. This property consists of guaranteeing the existence of a control, u in L^infinite([0,tau];R), such that the solution satisfies x_1(tau)=x_{1,1} and x_2(tau)=x_{2,1} for each pair {(x_{1,0},x_{2,0}) ,(x_{1,1},x_{2,1})} in a neighborhood of some equilibrium point of the system, where x_1(t), x_2(t) denote the populations of prey and predator species, respectively, at time t>0 e x_{1,0}, x_{2,0} are the initial populations.

Downloads

Download data is not yet available.

Author Biographies

References

BAUMAISTER, J.; LEITÃO, A. Introdução à Teoria de Controle e Programação Dinâmica. 1. ed. Rio de Janeiro: IMPA, 2014.

BOYCE, W. E.; DIPRIMA, R. C. Equações Diferenciais Elementares e Problemas de Valores de Contorno. 10. ed. Rio de Janeiro: LTC, 2015.

BÜRGER, R. Introducción al modelamiento en biomatemática. 133 p. Notas. Centro de Investigación en Ingeniería Matemática, Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Chile, 2012. Disponível em: https://www.ci2ma.udec.cl/pdf/apuntes_docentes/apuntes-INTRODUCCION-AL-MODELAMIENTO-EN-BIOMATEMATICA.pdf. Acesso em: 27 fev. 2024.

CASTRO, J. D. R.; RESTREPO, I. A. El modelo depredador-presa de Lotka-Volterra en las especies de lince canadiense y liebres raqueta de nieve. Cuadernos de Ingeniería Matemática, v. 1, n. 1, p. 1-11, 2021. Disponível em: http://hdl.handle.net/10784/29851. Acesso em: 2 fev. 2024.

CORON, J.-M. Control and nonlinearity. Mathematical Surveys and Monographs. v. 136. United States of America: American Mathematical Society. 2007.

HENAREJOS, A. W. Observabilidade e controlabilidade de modelos biológicos. Orientador: Francis Félix Córdova Puma. 2023. 70 f. Trabalho de Conclusão de Curso (Graduação em Licenciatura em Matemática) - Universidade Federal de Santa Catarina, Blumenau, 2023. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/248383/TCC_ADRIANA_W_H_PDFA_ASSINADO.pdf?sequence=1. Acesso em: 2 fev. 2024.

RUDIN, W. Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. 3. ed. New York: McGraw-hill, 1976.

SALVADOR, J. A.; ARENALES, S. H. de V. Modelagem Matemática de Problemas Ambientais. Coleção UAB-UFSCar (Engenharia Ambiental). São Carlos, SP: EDUFSCAR, 2012.

SONTAG, E. D. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Texts in Applied Mathematics. v. 6. 2. ed. Berlim: Springer, 1998.

Published

2024-03-06

Issue

Section

Mathematics

How to Cite

Local controllability for a Lotka-Volterra model. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 10, n. 1, p. e3003, 2024. DOI: 10.35819/remat2024v10i1id6923. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6923.. Acesso em: 19 nov. 2024.

Similar Articles

21-30 of 326

You may also start an advanced similarity search for this article.