Local controllability for a Lotka-Volterra model
DOI:
https://doi.org/10.35819/remat2024v10i1id6923Keywords:
mathematical modeling, controllability, Lotka-Volterra modelAbstract
In this article, we apply the tools of mathematical controllability theory in biological models. The approximation method around equilibrium solutions was used to study the local controllability of Lotka-Volterra systems, which model population dynamics between prey and predator species. We performed an analysis to determine if specific problems of the Lotka-Volterra type have the property of local controllability, which is guaranteed for certain equilibrium points. This property consists of guaranteeing the existence of a control, u in L^infinite([0,tau];R), such that the solution satisfies x_1(tau)=x_{1,1} and x_2(tau)=x_{2,1} for each pair {(x_{1,0},x_{2,0}) ,(x_{1,1},x_{2,1})} in a neighborhood of some equilibrium point of the system, where x_1(t), x_2(t) denote the populations of prey and predator species, respectively, at time t>0 e x_{1,0}, x_{2,0} are the initial populations.
Downloads
References
BAUMAISTER, J.; LEITÃO, A. Introdução à Teoria de Controle e Programação Dinâmica. 1. ed. Rio de Janeiro: IMPA, 2014.
BOYCE, W. E.; DIPRIMA, R. C. Equações Diferenciais Elementares e Problemas de Valores de Contorno. 10. ed. Rio de Janeiro: LTC, 2015.
BÜRGER, R. Introducción al modelamiento en biomatemática. 133 p. Notas. Centro de Investigación en Ingeniería Matemática, Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Chile, 2012. Disponível em: https://www.ci2ma.udec.cl/pdf/apuntes_docentes/apuntes-INTRODUCCION-AL-MODELAMIENTO-EN-BIOMATEMATICA.pdf. Acesso em: 27 fev. 2024.
CASTRO, J. D. R.; RESTREPO, I. A. El modelo depredador-presa de Lotka-Volterra en las especies de lince canadiense y liebres raqueta de nieve. Cuadernos de Ingeniería Matemática, v. 1, n. 1, p. 1-11, 2021. Disponível em: http://hdl.handle.net/10784/29851. Acesso em: 2 fev. 2024.
CORON, J.-M. Control and nonlinearity. Mathematical Surveys and Monographs. v. 136. United States of America: American Mathematical Society. 2007.
HENAREJOS, A. W. Observabilidade e controlabilidade de modelos biológicos. Orientador: Francis Félix Córdova Puma. 2023. 70 f. Trabalho de Conclusão de Curso (Graduação em Licenciatura em Matemática) - Universidade Federal de Santa Catarina, Blumenau, 2023. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/248383/TCC_ADRIANA_W_H_PDFA_ASSINADO.pdf?sequence=1. Acesso em: 2 fev. 2024.
RUDIN, W. Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. 3. ed. New York: McGraw-hill, 1976.
SALVADOR, J. A.; ARENALES, S. H. de V. Modelagem Matemática de Problemas Ambientais. Coleção UAB-UFSCar (Engenharia Ambiental). São Carlos, SP: EDUFSCAR, 2012.
SONTAG, E. D. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Texts in Applied Mathematics. v. 6. 2. ed. Berlim: Springer, 1998.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.