Planejamento de trajetórias polinomiais para robótica com Arduino
DOI:
https://doi.org/10.35819/remat2018v4i1id2758Palavras-chave:
Tracker, Scilab, Servo MotorResumo
O presente trabalho apresenta resultados de um processo investigatório aplicado ao planejamento de trajetórias polinomiais para robótica com Arduino. Imersa na atmosfera da Quarta Revolução Industrial, a pesquisa ancora-se nos pressupostos teórico metodológicos de “Aprendizagem Baseada em Projetos”, em uma estreita interligação com a proposta STEM, como um acrônimo das palavras Science (Ciências), Tecnology (tecnologia), Engineering (Engenharia) e Math (Matemática). O desenvolvimento da pesquisa contou com a utilização de diversos recursos tecnológicos para construção de peças, para filmagem dos experimentos e para captura e processamento de dados e geração de gráficos. Juntamente com a implementação de uma bancada experimental de testes, a pesquisa permitiu avaliar o desempenho de diferentes estratégias de geração de trajetórias para o deslocamento de uma haste fixada ao eixo de rotação de um Micro Servo Motor utilizado para acionamento em robótica com Arduino. Os resultados obtidos mostram que a estratégia de suavização de trajetórias de deslocamento contínuo com a utilização de funções polinomiais é um potencial recurso para a minimização de erros, principalmente para o seguimento de trajetória contínua. A pesquisa realizada por meio do desenvolvimento de projetos experimentais, incentivando a aprendizagem interdisciplinar com foco na aplicação prática do aprendizado, alinha-se com os pressupostos teóricos destacados ao visar o envolvimento dos estudantes em soluções de problemas reais.Downloads
Referências
ANDERSSON, R. L. Aggressive trajectory generator for a robot ping-pong player. IEEE Control Systems Magazine, v. 9, n. 1, p. 15-21, fev. 1989.
ARDUINO. Home Page. Disponível em: https://www.arduino.cc/. Acesso em: 15 mar. 2018.
BENDER, W. N. Aprendizagem Baseada em Projetos: Educação Diferenciada para o Século XXI. Porto Alegre: Penso Editora, 2014.
BYBEE, R. W. The Case for STEM Education: Challenges and Opportunities. Arlington: NSTA Press, 2013.
COBB, P.; CONFREY, J.; DISESSA, A.; LEHRER, R.; SCHAUBLE, L. Design Experiments in Educational Research. Educational Researcher, v. 32, n. 1, p. 9-13, jan./fev. 2003.
CRAIG, J. J. Introduction to Robotics Mechanics and Control. 2. ed. Addison-Wesley, 1989.
DOERR, H. M.; WOOD, T. Pesquisa-Projeto (design research): aprendendo a ensinar Matemática. In: BORBA, M. C. (Org.). Tendências internacionais em formação de professores de matemática. Belo Horizonte: Autêntica, 2006. p. 113-128.
ENGLISH, L. D. STEM education K-12: perspectives on integration. International Journal of STEM Education, p. 1-8, 2016.
LABOY-RUSH, D. Integrated STEM Education through Project-Based Learning. In Learning.com. 2013. Disponível em: https://www.rondout.k12.ny.us/common/pages/DisplayFile.aspx?itemId=16466975. Acesso em: 15 mar. 2018.
LYNCH, M. K.; PARK, F. C. Modern Robotics Mechanics, Planning, and Control. Cambridge University Press, 2017.
POPOV, E. P.; YUREVICH, E. I. Robotics. Moscow: Mir Publishers, 1987.
SANCHEZ, W. A quarta revolução industrial e seus impactos na educação. Disponível em: https://blog.abmes.org.br/?p=11915. Acesso em: 11 mar. 2018.
SCHONS, C.; PRIMAZ, E.; WIRTH, G. Introdução a Robótica Educativa na Instituição Escolar. 2010. Disponível em: https://www.yumpu.com/pt/document/view/3530407/introducao-a-robotica-educativa-nainstituicao-escolar-para. Acesso em: 19 mar. 2018.
SCHWAB, K. A Quarta Revolução Industrial. 1. ed. Editora EDIPRO, 2016.
SHILLER, Z.; DUBOWSKY, S. On computing the global time-optimal motion of robotic manipulators in the presence of obstacles. IEEE Transactions on Robotics and Automation, v. 7, n. 6, p. 785-797, dez. 1991.
SILVA, S. R. X. Protótipo De um Robô Móvel Interdisciplinar de Baixo Custo para uso educacional em Cursos Superiores de Engenharia e Computação. 2011. 220 f. Dissertação (Mestrado em Mecatrônica) – Universidade Federal da Bahia, Salvador, 2011.
VAZ, R. L. O uso das isometrias do Software Cabri-Gèométre como recurso no processo de prova e demonstração. 2004. 216 f. Dissertação (Mestrado em Educação) – Pontifícia Universidade Católica de São Paulo, São Paulo, 2004.
VENTURELLI, M. A tecnologia ignora a crise: A Automação Industrial provocando a 4ª Revolução Industrial. Automação Industrial, ago. 2017. Disponível em: https://www.automacaoindustrial.info/tecnologia-ignora-crise-automacao-industrial-provocando-4a-revolucao-industrial/. Acesso em: 22 mar. 2018.
Downloads
Publicado
Edição
Seção
Licença
Os autores detêm os direitos autorais dos artigos publicados e concedem à REMAT o direito de primeira publicação e distribuição de partes ou do trabalho como um todo com o objetivo de promover a revista. Os autores são autorizados a distribuir a versão publicada do artigo, como por exemplo em repositórios institucionais, desde que façam menção de publicação inicial nesta revista a partir da disponibilização do DOI do artigo.
Os artigos são publicados sob a licença Creative Commons Attribution 4.0 International License (CC BY 4.0). Isso permite que o conteúdo seja utilizado para criação de novos trabalhos, tanto para fins comerciais quanto não comerciais, desde que seja feita a devida atribuição ao autor original, conforme especificado na licença.