Ações e representações de semigrupoides inversos

Autores

DOI:

https://doi.org/10.35819/remat2023v9i1id6174

Palavras-chave:

Grupoide, Semigrupoide Inverso, Ações de Semigrupoide Inverso, Representações de Semigrupoide Inverso

Resumo

Provamos que existe uma correspondência um para um entre as ações parciais de um grupoide G sobre um conjunto X e as ações de semigrupoide inverso do semigrupoide inverso de Exel S(G) sobre X. Também definimos representações de semigrupoide inverso sobre um espaço de Hilbert H, bem como a C*-álgebra grupoide parcial de Exel C*_p(G), e provamos que existe uma correspondência um para um entre representações parciais de grupoide de G sobre H, representações de semigrupoide inverso de S(G) sobre H e representações de C*-álgebra de C*_p(G) sobre H.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

Referências

ABADIE, Fernando. On partial actions and groupoids. Proceedings of the American Mathematical Society, v. 132, n. 4, p. 1037-1047, 2004. DOI: https://doi.org/10.1090/S0002-9939-03-07300-3.

BAGIO, Dirceu; FLORES, Daiana; PAQUES, Antonio. Partial actions of ordered groupoids on rings. Journal of Algebra and its Applications, v. 9, n. 3, p. 501-517, 2010. DOI: https://doi.org/10.1142/S021949881000404X.

BAGIO, Dirceu; PAQUES, Antonio. Partial groupoid actions: globalization, Morita theory, and Galois theory. Communications in Algebra, v. 40, n. 10, p. 3658-3678, 2012. DOI: https://doi.org/10.1080/00927872.2011.592889.

BAGIO, Dirceu. Partial actions of inductive groupoids on rings. International Journal of Mathematics, Game Theory, and Algebra, v. 20, n. 3, p. 247, 2011.

BAGIO, Dirceu; PINEDO, Hector. Globalization of partial actions of groupoids on nonunital rings. Journal of Algebra and Its Applications, v. 15, n. 5, p. 1650096, 2016. DOI: https://doi.org/10.1142/S0219498816500961.

BAGIO, Dirceu; PINEDO, Hector. On the separability of the partial skew groupoid ring. São Paulo Journal of Mathematical Sciences, v. 11, n. 2, p. 370-384, 2017. DOI: https://doi.org/10.1007/s40863-017-0068-6.

BUSS, Alcides; MEYER, Ralf. Inverse semigroup actions on groupoids. Rocky Mountain Journal of Mathematics, v. 47, n. 1, p. 53-159, 2017. DOI: https://doi.org/10.1216/RMJ-2017-47-1-53.

CORTES, Wagner. On groupoids and inverse semigroupoids actions. Unpublished manuscript, 2018.

CORTES, Wagner. TAMUSIUNAS, Thaisa. A characterisation for a groupoid Galois extension using partial isomorphisms. Bulletin of the Australian Mathematical Society, v. 96, n. 1, p. 59-68, 2017. DOI: https://doi.org/10.1017/S0004972717000077.

DEWOLF, Darien; PRONK, Dorette. The Ehresmann-Schein-Nambooripad theorem for inverse categories. Theory and Applications of Categories, v. 33, n. 27, p. 813–831, 2018. Available in: http://www.tac.mta.ca/tac/volumes/33/27/33-27.pdf. Accessed in: 15 July 15, 2022.

DOKUCHAEV, Michael; EXEL, Ruy. Associativity of crossed products by partial actions, enveloping actions and partial representations. Transactions of the American Mathematical Society, v. 357, n. 5, p. 1931-1952, 2005. DOI: https://doi.org/10.1090/S0002-9947-04-03519-6.

DOKUCHAEV, Michael. Partial actions: a survey. In: MILIES, César Polcino (Org.). Groups, Algebras and Applications: XVIII Latin American Algebra Colloquium. Contemporary Mathematics, American Mathematical Society, v. 537, p. 173-184, 2011. ISBN 08-2185-239-6.

EXEL, Ruy. Circle actions on C*-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence. Journal of Functional Analysis, v. 122, n. 2, p. 361-401, 1994. DOI: https://doi.org/10.1006/jfan.1994.1073.

EXEL, Ruy. Partial actions of groups and actions of inverse semigroups. Proceedings of the American Mathematical Society, v. 126, n. 12, p. 3481-3494, 1998. DOI: https://doi.org/10.1090/S0002-9939-98-04575-4.

EXEL, Ruy; VIEIRA, Felipe. Actions of inverse semigroups arising from partial actions of groups. Journal of mathematical analysis and applications, v. 363, n. 1, p. 86-96, 2010. DOI: https://doi.org/10.1016/j.jmaa.2009.08.001.

GILBERT, Nicholas David. Actions and expansions of ordered groupoids. Journal of Pure and Applied Algebra, v. 198, n. 1-3, p. 175-195, 2003. DOI: https://doi.org/10.1016/j.jpaa.2004.11.006.

KELLENDONK, Johannes; LAWSON, Mark V. Partial actions of groups. International Journal of Algebra and Computation, v. 14, n. 1, p. 87-114, 2004. DOI: https://doi.org/10.1142/S0218196704001657.

LAWSON, Mark; MARGOLIS, Stuart; STEINBERG, Benjamin. Expansions of inverse semigroups. Journal of the Australian Mathematical Society, v. 80, n. 2, p. 205-228, 2006. DOI: https://doi.org/10.1017/S1446788700013082.

LIU, Veny. Free inverse semigroupoids and their inverse subsemigroupoids. Advisor: Jon M. Corson. 2016. Dissertation (Ph.D. in Philosophy in Mathematics) - The University of Alabama, 2016. Available in: https://ir.ua.edu/handle/123456789/2693. Accessed in: 15 July 15, 2022.

RENAULT, Jean. A groupoid approach to C*-algebras. Lecture Notes in Mathematics. v. 793. Berlin: Springer, 1980, 164 p. ISBN 35-4009-977-8.

RENAULT, Jean; SKANDALIS, Georgers. The ideal structure of grupoid crossed product C*-algebras. Journal of Operator Theory, v. 25, n. 1, p. 3-36, 1991. Available in: http://www.jstor.org/stable/24718790. Accessed in: 15 July 15, 2022.

Downloads

Publicado

2023-05-31

Edição

Seção

Matemática

Como Citar

TAMUSIUNAS, Thaísa Raupp; LAUTENSCHLAEGER, Wesley Gonçalves. Ações e representações de semigrupoides inversos. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 9, n. 1, p. e3006, 2023. DOI: 10.35819/remat2023v9i1id6174. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6174.. Acesso em: 22 nov. 2024.

Artigos Semelhantes

1-10 de 292

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.