Decodificador baseado em Rede Neural Profunda para Códigos de Bloco Lineares Curtos Transmitidos via Canal Binário Simétrico
DOI:
https://doi.org/10.35819/remat2021v7i1id4389Palabras clave:
Decodificador Baseado em Rede Neural, Canal Binário Simétrico, Códigos Corretores de ErrosResumen
Os códigos de comprimento curto têm sido alvo de estudos recentes devido, principalmente, às exigências de tecnologias emergentes por requisitos específicos de comunicação. Entretanto, para a classe de código mais promissora (BCH), a decodificação é complexa quando se usa os decodificadores tradicionais. Nesse contexto, os projetos que empregam redes neurais para esse propósito manifestam-se como interessantes alternativas. Isto posto, neste artigo estende-se, para os códigos BCH de comprimento n menor ou igual a 31, o projeto de decodificador proposto na literatura que aplica a rede neural para estimar o padrão de erro a partir da síndrome do vetor recebido. Além disso, introduz-se um novo decodificador que estima iterativamente as posições mais confiáveis para serem os bits errôneos do padrão de erro previamente predito por uma rede neural. Os resultados apresentados evidenciam que para todos os códigos analisados, o novo decodificador alcança os máximos desempenhos teóricos.
Descargas
Referencias
BISHOP, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
BOSE, R. C.; RAY-CHAUDHURI, D. K. Further results on error correcting binary group codes. Information and Control, v. 3, n. 3, p. 279-290, set. 1960a. DOI: http://doi.org/10.1016/S0019-9958(60)90870-6.
BOSE, R. C.; RAY-CHAUDHURI, D. K. On a class of error correcting binary group codes. Information and Control, v. 3, n. 1, p. 68-79, mar. 1960b. DOI: http://doi.org/10.1016/S0019-9958(60)90287-4.
DURISI, G.; KOCH, T.; POPOVSKI, P. Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proceedings of the IEEE, v. 104, n. 9, p. 1711-1726, set. 2016. DOI: http://doi.org/10.1109/JPROC.2016.2537298.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.I.]: MIT Press, 2016. Disponível em: http://www.deeplearningbook.org. Acesso em: 14 maio 2020.
GRUBER, T.; CAMMERER, S.; HOYDIS, J.; BRINK, S. On deep learning-based channel decoding. In: ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, 2017, Baltimore. Proceedings ..., s.L.: IEEE, 2017. p. 1-6. DOI: http://doi.org/10.1109/CISS.2017.7926071.
HAYKIN, S. Digital Communication Systems. Hoboken, NJ: John Wiley & Son, Inc., 2014.
HOCQUENGHEM, A. Codes correcteurs d'erreus. Chiffres, v. 2, p. 147-156, 1959. Disponível em: http://kom.aau.dk/~heb/kurser/NOTER/KOFA02.PDF. Acesso em: 22 mar. 2020.
HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are universal approximators. Neural Networks, v. 2, n. 5, p. 359-366, 1989. DOI: https://doi.org/10.1016/0893-6080(89)90020-8.
IOFFE, S.; SZEGEDY, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. Disponível em: http://arxiv.org/abs/1502.03167. Acesso em: 28 abr. 2020.
KAMASSURY, J. K. S.; SILVA, V. F. O. Rápido reconhecimento de modulações analógicas e digitais via redes residuais profundas. In: SIMPÓSIO BRASILEIRO DE ENGENHARIA FÍSICA, 14, Ponta Grossa, 2020. Anais... Ponta Grossa: Atena Editora, 2020. cap. 9, p. 83-97. DOI: http://doi.org/10.22533/at.ed.1572002039.
KAMASSURY, J. K. S.; TÔRRES, I. F.; DUARTE, W. G. Decodificação de máxima verossimilhança para códigos de bloco lineares: probabilidades de erro do código de repetição e do código de Hamming. REMAT: Revista Eletrônica da Matemática, v. 5, n. 2, p. 177-191, 1 jul. 2019. DOI: https://doi.org/10.35819/remat2019v5i2id3371.
KINGMA, D. P.; BA, J. Adam: a method for stochastic optimization. CoRR, abs/1412.6980, 2014. Disponível em: http://arxiv.org/abs/1412.6980. Acesso em: 28 abr. 2020.
LIN, S.; COSTELLO, D. Error control coding: Fundamentals and Applications. 2. ed. Upper Saddle River, NJ: Prentice-Hall, 2004.
O'SHEA, T.; HOYDIS, J. An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, v. 3, n. 4, p. 563-575, dez. 2017. DOI: https://doi.org/10.1109/TCCN.2017.2758370.
PROAKIS, J. G.; SALEHI, M. Digital Communication. 5. ed. New York: McGraw-Hill, 2007.
SHIRVANIMOGHADDAM, M.; MOHAMMADI, M. S.; ABBAS, R.; MINJA, A.; YUE, C.; MATUZ, B.; HAN, G.; LIN, Z.; LIN, W.; LI, Y.; JONHSON, S.; VUCETIC, B. Short block-length codes for ultra-reliable low latency communications. IEEE Communications Magazine, v. 57, n. 2, p. 130-137, fev. 2019. DOI: http://doi.org/10.1109/MCOM.2018.1800181.
SMITH, L. N. Cyclical learning rates for training neural networks. In: IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, 2017, Santa Rosa. Proceedings..., s.L.: IEEE, 2017. p. 464-472. DOI: http://doi.org/10.1109/WACV.2017.58.
TALLINI, L. G.; CULL, P. Neural nets for decoding error-correcting codes. In: IEEE TECHNICAL APPLICATIONS CONFERENCE AND WORKSHOPS. NORTHCON/95. CONFERENCE RECORD, 1995, Portland. Proceedings..., s.L.: IEEE, 2002. p. 89-94. DOI: http://doi.org/10.1109/NORTHC.1995.485019.
WANG, X.-A; WICKER, S. B. An artificial neural net Viterbi decoder. IEEE Transactions on Communications, v. 44, n. 2, p. 165-171, 1996. DOI: http://doi.org/10.1109/26.486609.
WHITE, H. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks, v. 3, n. 5, p. 535-549, 1990. DOI: https://doi.org/10.1016/0893-6080(90)90004-5.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 REMAT: Revista Eletrônica da Matemática
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
REMAT conserva los derechos de autor de los artículos publicados, teniendo derecho a la primera publicación del trabajo, mención de la primera publicación en la revista en otros medios publicados y distribución de partes o del trabajo en su conjunto con el fin de promover la revista.
Esta es una revista de acceso abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin solicitar permiso previo a la revista o al autor. Esta declaración está de acuerdo con la definición de BOAI de acceso abierto.