A proof of the irrationality of Euler's number
DOI:
https://doi.org/10.35819/remat2024v10i2id7115Keywords:
Euler's number, irrational number, proof of irrationalityAbstract
Euler's number, denoted by e, stands as one of the most emblematic constants in mathematics. It is an irrational number that serves as the base of natural logarithms, boasting significant historical and theoretical aspects. The present work aims to demonstrate the irrationality of any non-zero rational power of the Euler number. To construct this demonstration, a sequence of real numbers, derived from a definite integral, is used and through the technique of integration by parts and by the use of the second principle of induction, a special characterization is presented allowing to deduce the main result. As an immediate consequence, we obtain the irrationality of Euler's number and also that the natural logarithm of every positive rational number other than one is irrational.
Downloads
References
AIGNER, M.; ZIEGLER, G. M. Proofs from THE BOOK. 6. ed. Berlim: Springer, 2018. ISBN 978-3-662-57264-1. Disponível em: https://link.springer.com/book/10.1007/978-3-662-57265-8. Acesso em: 13 set. 2024.
DUPONT, Ghislain. Irrationalité de pi. univ-lemans.fr, 2004.
EULER, Leonhard. De fractionibus continuis dissertatio. 1744. The Euler Archive. All Works by Eneström Number. n. 71, 2018. Disponível em: https://scholarlycommons.pacific.edu/euler-works/71. Acesso em: 12 set. 2024.
FIGUEIREDO, D. G. Números irracionais e transcendentes. 3. ed. Rio de Janeiro: SBM, 2011. Coleção de Iniciação Científica.
GUIDORIZZI, H. L. Um curso de Cálculo. 5. ed. São Paulo: Livros Técnicos e Científicos, 2001. v. 1.
KOKSMA, J. F. On Niven’s proof that pi is irrational. Nieuw Archief voor Wiskunde, v. 2, p. 23-39, 1949.
LIMA, Elon Lages. Análise real: funções de uma variável. 10. ed. Rio de Janeiro: IMPA, 2008. v. 1. Coleção Matemática Universitária.
LIOUVILLE, Joseph. Sur l’irrationalité du nombre e = 2, 718... Journal de Mathématiques Pures et Appliquées, v. 5, n. 1, p. 192, 1840. Disponível em: http://www.numdam.org/item/JMPA_1840_1_5__192_0. Acesso em: 13 set. 2024.
MAKAROV B. M.; GOLUZINA, M. G.; LODKIN, A. A.; PODKORYTOV, A. N. Selected Problems in Real Analysis. Providence: American Mathematical Society, 1992. v. 107.
MAOR, Eli. e: A história de um número. 5. ed. Tradução: CALIFE, Jorge. Rio de Janeiro: Record, 2008. ISBN 978-85-01-05847-8.
MARQUES, Diego. Teoria dos números transcendentes. 1. ed. Rio de Janeiro: SBM, 2013. Coleção Matemática Universitária. ISBN 9788585818784.
NERI, Cassio; CABRAL, Marco. Curso de Análise Real. 1. ed. Rio de Janeiro: IM-UFRJ, 2021. ISBN 978-65-86502-04-6.
NIVEN, Ivan. A simple proof that pi is irrational. Bulletin of the American Mathematical Society, v. 53, n. 6, 1947.
OLIVEIRA, Fernando Neri. Uma prova elementar da irracionalidade de pi. C.Q.D.: Revista Eletrônica Paulista de Matemática, Bauru, v. 13, set./nov. 2018. Disponível em: https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/article/view/224. Acesso em: 12 set. 2024.
SANTOS, Devison Rocha. A utilização da integral de Riemann como ferramenta para demonstração da irracionalidade de alguns números reais. Orientador: Felipe Fonseca dos Santos. 2022. 49 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Amargosa, 2022. Disponível em: https://www2.ufrb.edu.br/matematica/trabalho-de-conclusao-de-curso-tcc. Acesso em: 12 set. 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Felipe Fonseca dos Santos, Devison Rocha Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.