Modeling and numerical simulation of a prey-predator model with competition under the effect of a pollutant in BSFA: dispersal-migration
DOI:
https://doi.org/10.35819/remat2024v10iespecialid7108Keywords:
partial differential equations, Galerkin method, Crank-Nicolson method, variational formulation, spatial and temporal discretizationAbstract
This work presents the results of a master's thesis that investigated the impact of a pollutant on the population dynamics of species that interact with each other in the same environment. A system of Dispersion-Migration Partial Differential Equations is presented, which was discretized spatially using the Galerkin Method via Finite Elements and temporally using the Crank-Nicolson Method. The non-linear equations of the system used in modeling and their variational formulations are presented here. The resulting discrete nonlinear system, with which the numerical simulations were carried out, is also presented. This study significantly contributes to understanding the impacts of the presence of polluting materials arising from anthropogenic actions in a given environment, especially with regard to their effects on the population densities of coexisting species.
Downloads
References
IÓRIO, V. de Magalhães. EDP: um curso de graduação. 4. ed. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 2018. Coleção Matemática Universitária.
KARDESTUNCER, H.; NORRIE, D. H. (ed.). Finite element handbook. New York: McGraw-Hill, 1987.
LAGERLOEF, Gary; BONJEAN, Fabrice; DOHAN, Kathleen. OSCAR third degree resolution ocean surface currents. 2009. The OSCAR data were obtained from JPL Physical Oceanography Distributed Active Archive Center and developed by Earth Space Research. Disponível em: http://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg. Acesso em: 21 jan. 2024.
LANDIM, P. M. B. Introdução aos métodos de estimação espacial para confecção de mapas. Texto didático 2. Rio Claro: DGA, IGCE, UNESP, 2000. Disponível em: https://www.sorocaba.unesp.br/Home/Graduacao/EngenhariaAmbiental/robertowlourenco/dicas-surfer-01.pdf. Acesso em: 8 jul. 2024.
LOTKA, A. J. Elements of physical biology. Nature, [s. l.], v. 116, p. 461, 1925. DOI: https://doi.org/10.1038/116461b0.
MARTINELLI, G. L.Determinação do fluxo de calor em uma região plana com condições de contorno mistas, utilizando o método de Crank-Nicolson. Orientador: Vitor José Petry. 2020. 57 f. Monografia (Trabalho de Conclusão de Curso em Licenciatura em Matemática) - Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, 2020. Disponível em: https://rd.uffs.edu.br/handle/prefix/4711. Acesso em: 8 jul. 2024.
MURRAY, J. D. Mathematical Biology: I. An Introduction. 3. ed. New York: Springer, 2003. v. 17. Interdisciplinary Applied Mathematics.
OLIVEIRA, V. H. M. Modelagem e simulações numéricas da interação de espécies na presença de um material impactante: o caso do peixe-leão ("Pterois volitans") no litoral norte brasileiro. Orientadores: João Frederico da Costa Azevedo Meyer, Daniela Ribeiro Monteiro. 2024. 168 f. Dissertação (Mestrado em Matemática Aplicada) - Universidade Estadual de Campinas, Campinas. Disponível em: https://hdl.handle.net/20.500.12733/15826. Acesso em: 8 jul. 2024.
SALVATIERRA, M. M. Modelagem Matemática e simulação computacional da presença de materiais impactantes tóxicos em casos de dinâmica populacional com competição inter e intra-específica. Orientador: João Frederico da Costa Azevedo Meyer. 2005. 53f. Dissertação (Mestrado em Matemática Aplicada) - Universidade Estadual de Campinas, Campinas. DOI: https://doi.org/10.47749/T/UNICAMP.2005.360544.
SANTOS, H. S. Relações ecológicas. BiologiaNet, 2023. Disponível em: https://www.biologianet.com/amp/ecologia/relacoes-ecologicas.htm. Acesso em: 6 ago. 2023.
SKELLAM, J. G. Random dispersal in theoretical populations. Bulletin of Mathematical Biology, [s. l.], v. 53, n. 1, p. 135-165, 1991. DOI: https://doi.org/10.1016/S0092-8240(05)80044-8.
SOSSAE, R. C.A presença evolutiva de um material impactante e seu efeito no transiente populacional de espécies interativas: modelagem e aproximação. Orientador: João Frederico da Costa Azevedo Meyer. 2003. 98 f. Tese (Doutorado em Matemática Aplicada) - Universidade Estadual de Campinas, Campinas. DOI: https://doi.org/10.47749/T/UNICAMP.2003.294332.
VOLTERRA, V. Fluctuations in the abundance of a species considered mathematically. Nature, [s. l.], v. 118, p. 558-560, 1926. DOI: https://doi.org/10.1038/118558a0.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.