Uma formulação multiescala não linear e descontínua para problemas de convecção-difusão-reação

Autores

  • Enéas Mendes de Jesus Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Campus Piúma, Piúma, ES; Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brasil https://orcid.org/0000-0002-2384-3831
  • Isaac Pinheiro dos Santos Universidade Federal do Espírito Santo (UFES), Campus de São Mateus, São Mateus, ES, Brasil https://orcid.org/0000-0001-8524-0393

DOI:

https://doi.org/10.35819/remat2024v10iespecialid7088

Palavras-chave:

Galerkin descontínuo, difusão artificial, convecção-difusão-reação, funções bolha, métodos multiescalas

Resumo

Este trabalho apresenta uma formulação de Galerkin descontínua multiescala e não linear com o objetivo de resolver problemas de convecção-difusão-reação. Considerando uma decomposição do espaço de aproximação em duas escalas, macro e micro, o novo método introduz um operador não linear de difusão artificial em ambas as escalas de discretização, enquanto utiliza a abordagem descontínua somente na macro escala. A micro escala é modelada através de funções bolha (funções polinomiais que se anulam na fronteira dos elementos), permitindo a aplicação do processo de condensação estática em cada elemento. A discretização do modelo numérico resulta em um sistema global de equações associado aos pontos nodais apenas da macro escala. Para avaliar as propriedades de estabilidade e convergência do esquema proposto, foram realizados alguns experimentos numéricos e comparados com o método de Galerkin descontínuo clássico. A formulação proposta mostrou-se eficiente em eliminar as oscilações espúrias que aparecem nas regiões de gradientes elevados em problemas com convecção/reação dominantes. Além disso, o método apresentou taxas ótimas de convergência.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Enéas Mendes de Jesus, Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Campus Piúma, Piúma, ES; Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brasil
  • Isaac Pinheiro dos Santos, Universidade Federal do Espírito Santo (UFES), Campus de São Mateus, São Mateus, ES, Brasil

Referências

ARNOLD, D. N.; BREZZI, F.; COCKBURN, B.; MARINI, L. D. Unified Analysis of Discontinuous Galerkin Methods

for Elliptic Problems. SIAM Journal on Numerical Analysis, [S. l.], v. 39, n. 5, p. 1749-1779, 2002. DOI: https://doi.org/10.1137/S0036142901384162.

ARRUDA, N. C. B.; ALMEIDA, R. C.; DO CARMO, E. G. D. Discontinuous subgrid formulations for transport problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 199, n. 49, p. 3227-3236, 2010a. DOI: https://doi.org/10.1016/j.cma.2010.06.028.

ARRUDA, N. C. B.; ALMEIDA, R. C.; DO CARMO, E. G. D. Dynamic diffusion formulation for advection dominated transport problems. Mecánica Computacional, [S. l.], v. 29, n. 20, p. 2011-2025, 2010b. Disponível em: http://venus.ceride.gov.ar/ojs/index.php/mc/article/view/3135/3063. Acesso em: 2 jul. 2024.

BARRENECHEA, G. R.; BURMAN, E.; KARAKATSANI, F. Blending low-order stabilised finite element methods: A positivity-preserving local projection method for the convection–diffusion equation. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 317, p. 1169-1193, 2017. DOI: https://doi.org/10.1016/j.cma.2017.01.016.

BROOKS, A. N.; HUGHES, T. J. R. Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 32, n. 1, p. 199-259, 1982. DOI: https://doi.org/10.1016/0045-7825(82)90071-8.

BURMAN, E.; HANSBO, P. Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 193, n. 15, p. 1437-1453, 2004. DOI: https://doi.org/10.1016/j.cma.2003.12.032.

COCKBURN, B.; HOU, S.; SHU, C.-W. TVD Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: The multidimensional case. Mathematics of Computation, [S. l.], v. 54, n. 190, p. 545-581, 1990. Disponível em: http://www.jstor.org/stable/2008501. Acesso em: 2 jul. 2024.

COCKBURN, B.; KARNIADAKIS, G. E.; SHU, C.-W. The development of discontinuous Galerkin methods. In: COCKBURN, B.; KARNIADAKIS, G. E.; SHU, C.-W. (ed.). Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering. [S. l.]: Springer Verlag, 2000. v. 11, p. 3-50. Disponível em: https://conservancy.umn.edu/server/api/core/bitstreams/45558d35-9d55-4e64-8086-98f1fcebe49f/content. Acesso em: 2 jul. 2024.

FRERICHS, D.; JOHN, V. On a technique for reducing spurious oscillations in DG solutions of convection-diffusion equations. Applied Mathematics Letters, [S. l.], v. 129, p. 107969, 2022. DOI: https://doi.org/10.1016/j.aml.2022.107969.

FRERICHS, D.; JOHN, V. On reducing spurious oscillations in discontinuous Galerkin (DG) methods for steady-state convection-diffusion equations. Journal of Computational and Applied Mathematics, [S. l.], v. 393, p. 113487, 2021. DOI: https://doi.org/10.1016/j.cam.2021.113487.

HOUSTON, P.; C. SCHWAB, C.; SULI, E. Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM Journal on Numerical Analysis, [S. l.], v. 39, n. 6, p. 2133-2163, 2002. DOI: https://doi.org/10.1137/S0036142900374111.

HUGHES, T. J. R.; FRANCA, L. P.; HULBERT, G. M. A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 73, n. 2, p. 173-189, 1989. DOI: https://doi.org/10.1016/0045-7825(89)90111-4.

JOHN, V.; KNOBLOCH, P. On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II - Analysis for P1 and Q1 finite elements. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 197, n. 21, p. 1997-2014, 2008. DOI: https://doi.org/10.1016/j.cma.2007.12.019.

OIKAWA, I. Hybridized discontinuous Galerkin method for convection-diffusion problems. Japan Journal of Industrial and Applied Mathematics, [S. l.], v. 31, n. 2, p. 335-354, 2014. DOI: https://doi.org/10.1007/s13160-014-0137-5.

PERSSON, P.; PERAIRE, J. Sub-cell shock capturing for discontinuous Galerkin methods. In: AIAA AEROSPACE SCIENCES MEETING AND ENHIBIT, 44., 2006, Nevada. Anais [...]. Cambridge: Massachusetts Institute of Technology, 2012. v. 112, p. 9-12. DOI: https://doi.org/10.2514/6.2006-112.

REED, W. H.; HILL, T. R. Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479. Los Alamos: Los Alamos Scientific Laboratory, 1973. Disponível em: https://www.osti.gov/biblio/4491151. Acesso em: 2 jul. 2024.

SANTOS, I. P.; ALMEIDA, R. C. A nonlinear subgrid method for advection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 196, n. 45, p. 4771-4778, 2007. DOI: https://doi.org/10.1016/j.cma.2007.06.009.

SANTOS, I. P.; MALTA, Sandra M. C.; VALLI, Andrea M. P.; CATABRIGA, Lucia; ALMEIDA, Regina C. Convergence analysis of a new dynamic diffusion method. Computers & Mathematics with Applications, [S. l.], v. 98, p. 1-9, 2021. DOI: https://doi.org/10.1016/j.camwa.2021.06.012.

VALLI, Andrea. M. P.; ALMEIDA, Regina C.; SANTOS, Isaac P.; CATABRIGA, Lucia; MALTA, Sandra M. C.; COUTINHO, Alvaro L. G. A. A parameter-free dynamic diffusion method for advection-diffusion-reaction problems. Computers & Mathematics with Applications, [S. l.], v. 75, n. 1, p. 307-321, 2018. DOI: https://doi.org/10.1016/j.camwa.2017.09.020.

YÜCEL, H.; STOLL, M.; BENNER, P. Discontinuous Galerkin finite element methods with shock-capturing for nonlinear convection dominated models. Computers & Chemical Engineering, [S. l.], v. 58, p. 278-287, 2013. DOI: https://doi.org/10.1016/j.compchemeng.2013.07.011.

Downloads

Publicado

2024-07-08

Edição

Seção

Dossiê: Modelagem Computacional em Ciência e Tecnologia

Como Citar

Uma formulação multiescala não linear e descontínua para problemas de convecção-difusão-reação. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 10, n. especial, p. e4009, 2024. DOI: 10.35819/remat2024v10iespecialid7088. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7088.. Acesso em: 18 nov. 2024.

Artigos Semelhantes

1-10 de 68

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.