Una formulación multiescala no lineal y discontinua para problemas de convección-difusión-reacción

Autores/as

  • Enéas Mendes de Jesus Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Campus Piúma, Piúma, ES; Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brasil https://orcid.org/0000-0002-2384-3831
  • Isaac Pinheiro dos Santos Universidade Federal do Espírito Santo (UFES), Campus de São Mateus, São Mateus, ES, Brasil https://orcid.org/0000-0001-8524-0393

DOI:

https://doi.org/10.35819/remat2024v10iespecialid7088

Palabras clave:

Galerkin discontinuo, difusión artificial, convección-difusión-reacción, funciones burbuja, métodos multiescala

Resumen

Este trabajo presenta una formulación de Galerkin discontinua multiescala y no lineal con el objetivo de resolver problemas de convección-difusión-reacción. Considerando una descomposición del espacio de aproximación en dos escalas, macro y micro, el nuevo método introduce un operador no lineal de difusión artificial en ambas escalas de discretización, mientras utiliza el enfoque discontinuo solo en la macro escala. La microescala se modela a través de funciones burbuja (funciones polinomiales que se anulan en la frontera de los elementos), permitiendo la aplicación del proceso de condensación estática en cada elemento. La discretización del modelo numérico resulta en un sistema global de ecuaciones asociado a los puntos nodales solo de la macroescala. Para evaluar las propiedades de estabilidad y convergencia del esquema propuesto, se realizaron algunos experimentos numéricos y se compararon con el método de Galerkin discontinuo clásico. La formulación propuesta se mostró eficiente en la eliminación de las oscilaciones espurias que aparecen en regiones de gradientes elevados en problemas con convección/reacción dominantes. Además, el método presentó tasas óptimas de convergencia.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Enéas Mendes de Jesus, Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Campus Piúma, Piúma, ES; Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brasil
  • Isaac Pinheiro dos Santos, Universidade Federal do Espírito Santo (UFES), Campus de São Mateus, São Mateus, ES, Brasil

Referencias

ARNOLD, D. N.; BREZZI, F.; COCKBURN, B.; MARINI, L. D. Unified Analysis of Discontinuous Galerkin Methods

for Elliptic Problems. SIAM Journal on Numerical Analysis, [S. l.], v. 39, n. 5, p. 1749-1779, 2002. DOI: https://doi.org/10.1137/S0036142901384162.

ARRUDA, N. C. B.; ALMEIDA, R. C.; DO CARMO, E. G. D. Discontinuous subgrid formulations for transport problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 199, n. 49, p. 3227-3236, 2010a. DOI: https://doi.org/10.1016/j.cma.2010.06.028.

ARRUDA, N. C. B.; ALMEIDA, R. C.; DO CARMO, E. G. D. Dynamic diffusion formulation for advection dominated transport problems. Mecánica Computacional, [S. l.], v. 29, n. 20, p. 2011-2025, 2010b. Disponível em: http://venus.ceride.gov.ar/ojs/index.php/mc/article/view/3135/3063. Acesso em: 2 jul. 2024.

BARRENECHEA, G. R.; BURMAN, E.; KARAKATSANI, F. Blending low-order stabilised finite element methods: A positivity-preserving local projection method for the convection–diffusion equation. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 317, p. 1169-1193, 2017. DOI: https://doi.org/10.1016/j.cma.2017.01.016.

BROOKS, A. N.; HUGHES, T. J. R. Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 32, n. 1, p. 199-259, 1982. DOI: https://doi.org/10.1016/0045-7825(82)90071-8.

BURMAN, E.; HANSBO, P. Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 193, n. 15, p. 1437-1453, 2004. DOI: https://doi.org/10.1016/j.cma.2003.12.032.

COCKBURN, B.; HOU, S.; SHU, C.-W. TVD Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: The multidimensional case. Mathematics of Computation, [S. l.], v. 54, n. 190, p. 545-581, 1990. Disponível em: http://www.jstor.org/stable/2008501. Acesso em: 2 jul. 2024.

COCKBURN, B.; KARNIADAKIS, G. E.; SHU, C.-W. The development of discontinuous Galerkin methods. In: COCKBURN, B.; KARNIADAKIS, G. E.; SHU, C.-W. (ed.). Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering. [S. l.]: Springer Verlag, 2000. v. 11, p. 3-50. Disponível em: https://conservancy.umn.edu/server/api/core/bitstreams/45558d35-9d55-4e64-8086-98f1fcebe49f/content. Acesso em: 2 jul. 2024.

FRERICHS, D.; JOHN, V. On a technique for reducing spurious oscillations in DG solutions of convection-diffusion equations. Applied Mathematics Letters, [S. l.], v. 129, p. 107969, 2022. DOI: https://doi.org/10.1016/j.aml.2022.107969.

FRERICHS, D.; JOHN, V. On reducing spurious oscillations in discontinuous Galerkin (DG) methods for steady-state convection-diffusion equations. Journal of Computational and Applied Mathematics, [S. l.], v. 393, p. 113487, 2021. DOI: https://doi.org/10.1016/j.cam.2021.113487.

HOUSTON, P.; C. SCHWAB, C.; SULI, E. Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM Journal on Numerical Analysis, [S. l.], v. 39, n. 6, p. 2133-2163, 2002. DOI: https://doi.org/10.1137/S0036142900374111.

HUGHES, T. J. R.; FRANCA, L. P.; HULBERT, G. M. A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 73, n. 2, p. 173-189, 1989. DOI: https://doi.org/10.1016/0045-7825(89)90111-4.

JOHN, V.; KNOBLOCH, P. On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II - Analysis for P1 and Q1 finite elements. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 197, n. 21, p. 1997-2014, 2008. DOI: https://doi.org/10.1016/j.cma.2007.12.019.

OIKAWA, I. Hybridized discontinuous Galerkin method for convection-diffusion problems. Japan Journal of Industrial and Applied Mathematics, [S. l.], v. 31, n. 2, p. 335-354, 2014. DOI: https://doi.org/10.1007/s13160-014-0137-5.

PERSSON, P.; PERAIRE, J. Sub-cell shock capturing for discontinuous Galerkin methods. In: AIAA AEROSPACE SCIENCES MEETING AND ENHIBIT, 44., 2006, Nevada. Anais [...]. Cambridge: Massachusetts Institute of Technology, 2012. v. 112, p. 9-12. DOI: https://doi.org/10.2514/6.2006-112.

REED, W. H.; HILL, T. R. Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479. Los Alamos: Los Alamos Scientific Laboratory, 1973. Disponível em: https://www.osti.gov/biblio/4491151. Acesso em: 2 jul. 2024.

SANTOS, I. P.; ALMEIDA, R. C. A nonlinear subgrid method for advection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 196, n. 45, p. 4771-4778, 2007. DOI: https://doi.org/10.1016/j.cma.2007.06.009.

SANTOS, I. P.; MALTA, Sandra M. C.; VALLI, Andrea M. P.; CATABRIGA, Lucia; ALMEIDA, Regina C. Convergence analysis of a new dynamic diffusion method. Computers & Mathematics with Applications, [S. l.], v. 98, p. 1-9, 2021. DOI: https://doi.org/10.1016/j.camwa.2021.06.012.

VALLI, Andrea. M. P.; ALMEIDA, Regina C.; SANTOS, Isaac P.; CATABRIGA, Lucia; MALTA, Sandra M. C.; COUTINHO, Alvaro L. G. A. A parameter-free dynamic diffusion method for advection-diffusion-reaction problems. Computers & Mathematics with Applications, [S. l.], v. 75, n. 1, p. 307-321, 2018. DOI: https://doi.org/10.1016/j.camwa.2017.09.020.

YÜCEL, H.; STOLL, M.; BENNER, P. Discontinuous Galerkin finite element methods with shock-capturing for nonlinear convection dominated models. Computers & Chemical Engineering, [S. l.], v. 58, p. 278-287, 2013. DOI: https://doi.org/10.1016/j.compchemeng.2013.07.011.

Publicado

2024-07-08

Número

Sección

Dossiê: Modelagem Computacional em Ciência e Tecnologia

Cómo citar

JESUS, Enéas Mendes de; SANTOS, Isaac Pinheiro dos. Una formulación multiescala no lineal y discontinua para problemas de convección-difusión-reacción. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 10, n. especial, p. e4009, 2024. DOI: 10.35819/remat2024v10iespecialid7088. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7088.. Acesso em: 20 dec. 2024.

Artículos similares

1-10 de 70

También puede Iniciar una búsqueda de similitud avanzada para este artículo.