A nonlinear and discontinuous multiscale formulation for convection-diffusion-reaction problems

Authors

  • Enéas Mendes de Jesus Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Campus Piúma, Piúma, ES; Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brasil https://orcid.org/0000-0002-2384-3831
  • Isaac Pinheiro dos Santos Universidade Federal do Espírito Santo (UFES), Campus de São Mateus, São Mateus, ES, Brasil https://orcid.org/0000-0001-8524-0393

DOI:

https://doi.org/10.35819/remat2024v10iespecialid7088

Keywords:

discontinuous Galerkin, artificial diffusion, convection-diffusion-reaction, bubble functions, multiscale methods

Abstract

This work presents a formulation of discontinuous multiscale and nonlinear Galerkin method aiming to solve convection-diffusion-reaction problems. Considering a decomposition of the approximation space into two scales, macro and micro, the new method introduces a nonlinear artificial diffusion operator at both discretization scales, while employing the discontinuous approach only at the macro scale. The micro scale is modeled through bubble functions (polynomial functions that vanish at the boundary of the elements), allowing the application of the static condensation process in each element. The discretization of the numerical model results in a global system of equations associated with nodal points only at the macro scale. To assess the stability and convergence properties of the proposed scheme, several numerical experiments were conducted and compared with the classical discontinuous Galerkin method. The proposed formulation proved to be efficient in eliminating spurious oscillations that appear in regions of high gradients in problems with dominant convection/reaction. Furthermore, the method exhibited optimal convergence rates.

Downloads

Download data is not yet available.

Author Biographies

  • Enéas Mendes de Jesus, Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (IFES), Campus Piúma, Piúma, ES; Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brasil
  • Isaac Pinheiro dos Santos, Universidade Federal do Espírito Santo (UFES), Campus de São Mateus, São Mateus, ES, Brasil

References

ARNOLD, D. N.; BREZZI, F.; COCKBURN, B.; MARINI, L. D. Unified Analysis of Discontinuous Galerkin Methods

for Elliptic Problems. SIAM Journal on Numerical Analysis, [S. l.], v. 39, n. 5, p. 1749-1779, 2002. DOI: https://doi.org/10.1137/S0036142901384162.

ARRUDA, N. C. B.; ALMEIDA, R. C.; DO CARMO, E. G. D. Discontinuous subgrid formulations for transport problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 199, n. 49, p. 3227-3236, 2010a. DOI: https://doi.org/10.1016/j.cma.2010.06.028.

ARRUDA, N. C. B.; ALMEIDA, R. C.; DO CARMO, E. G. D. Dynamic diffusion formulation for advection dominated transport problems. Mecánica Computacional, [S. l.], v. 29, n. 20, p. 2011-2025, 2010b. Disponível em: http://venus.ceride.gov.ar/ojs/index.php/mc/article/view/3135/3063. Acesso em: 2 jul. 2024.

BARRENECHEA, G. R.; BURMAN, E.; KARAKATSANI, F. Blending low-order stabilised finite element methods: A positivity-preserving local projection method for the convection–diffusion equation. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 317, p. 1169-1193, 2017. DOI: https://doi.org/10.1016/j.cma.2017.01.016.

BROOKS, A. N.; HUGHES, T. J. R. Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 32, n. 1, p. 199-259, 1982. DOI: https://doi.org/10.1016/0045-7825(82)90071-8.

BURMAN, E.; HANSBO, P. Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 193, n. 15, p. 1437-1453, 2004. DOI: https://doi.org/10.1016/j.cma.2003.12.032.

COCKBURN, B.; HOU, S.; SHU, C.-W. TVD Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: The multidimensional case. Mathematics of Computation, [S. l.], v. 54, n. 190, p. 545-581, 1990. Disponível em: http://www.jstor.org/stable/2008501. Acesso em: 2 jul. 2024.

COCKBURN, B.; KARNIADAKIS, G. E.; SHU, C.-W. The development of discontinuous Galerkin methods. In: COCKBURN, B.; KARNIADAKIS, G. E.; SHU, C.-W. (ed.). Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering. [S. l.]: Springer Verlag, 2000. v. 11, p. 3-50. Disponível em: https://conservancy.umn.edu/server/api/core/bitstreams/45558d35-9d55-4e64-8086-98f1fcebe49f/content. Acesso em: 2 jul. 2024.

FRERICHS, D.; JOHN, V. On a technique for reducing spurious oscillations in DG solutions of convection-diffusion equations. Applied Mathematics Letters, [S. l.], v. 129, p. 107969, 2022. DOI: https://doi.org/10.1016/j.aml.2022.107969.

FRERICHS, D.; JOHN, V. On reducing spurious oscillations in discontinuous Galerkin (DG) methods for steady-state convection-diffusion equations. Journal of Computational and Applied Mathematics, [S. l.], v. 393, p. 113487, 2021. DOI: https://doi.org/10.1016/j.cam.2021.113487.

HOUSTON, P.; C. SCHWAB, C.; SULI, E. Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM Journal on Numerical Analysis, [S. l.], v. 39, n. 6, p. 2133-2163, 2002. DOI: https://doi.org/10.1137/S0036142900374111.

HUGHES, T. J. R.; FRANCA, L. P.; HULBERT, G. M. A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 73, n. 2, p. 173-189, 1989. DOI: https://doi.org/10.1016/0045-7825(89)90111-4.

JOHN, V.; KNOBLOCH, P. On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II - Analysis for P1 and Q1 finite elements. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 197, n. 21, p. 1997-2014, 2008. DOI: https://doi.org/10.1016/j.cma.2007.12.019.

OIKAWA, I. Hybridized discontinuous Galerkin method for convection-diffusion problems. Japan Journal of Industrial and Applied Mathematics, [S. l.], v. 31, n. 2, p. 335-354, 2014. DOI: https://doi.org/10.1007/s13160-014-0137-5.

PERSSON, P.; PERAIRE, J. Sub-cell shock capturing for discontinuous Galerkin methods. In: AIAA AEROSPACE SCIENCES MEETING AND ENHIBIT, 44., 2006, Nevada. Anais [...]. Cambridge: Massachusetts Institute of Technology, 2012. v. 112, p. 9-12. DOI: https://doi.org/10.2514/6.2006-112.

REED, W. H.; HILL, T. R. Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479. Los Alamos: Los Alamos Scientific Laboratory, 1973. Disponível em: https://www.osti.gov/biblio/4491151. Acesso em: 2 jul. 2024.

SANTOS, I. P.; ALMEIDA, R. C. A nonlinear subgrid method for advection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, [S. l.], v. 196, n. 45, p. 4771-4778, 2007. DOI: https://doi.org/10.1016/j.cma.2007.06.009.

SANTOS, I. P.; MALTA, Sandra M. C.; VALLI, Andrea M. P.; CATABRIGA, Lucia; ALMEIDA, Regina C. Convergence analysis of a new dynamic diffusion method. Computers & Mathematics with Applications, [S. l.], v. 98, p. 1-9, 2021. DOI: https://doi.org/10.1016/j.camwa.2021.06.012.

VALLI, Andrea. M. P.; ALMEIDA, Regina C.; SANTOS, Isaac P.; CATABRIGA, Lucia; MALTA, Sandra M. C.; COUTINHO, Alvaro L. G. A. A parameter-free dynamic diffusion method for advection-diffusion-reaction problems. Computers & Mathematics with Applications, [S. l.], v. 75, n. 1, p. 307-321, 2018. DOI: https://doi.org/10.1016/j.camwa.2017.09.020.

YÜCEL, H.; STOLL, M.; BENNER, P. Discontinuous Galerkin finite element methods with shock-capturing for nonlinear convection dominated models. Computers & Chemical Engineering, [S. l.], v. 58, p. 278-287, 2013. DOI: https://doi.org/10.1016/j.compchemeng.2013.07.011.

Published

2024-07-08

Issue

Section

Dossiê: Modelagem Computacional em Ciência e Tecnologia

How to Cite

A nonlinear and discontinuous multiscale formulation for convection-diffusion-reaction problems. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 10, n. especial, p. e4009, 2024. DOI: 10.35819/remat2024v10iespecialid7088. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7088.. Acesso em: 27 sep. 2024.

Similar Articles

1-10 of 68

You may also start an advanced similarity search for this article.