Generalized smoothly oscillating numbers

Authors

DOI:

https://doi.org/10.35819/remat2024v10i2id7045

Keywords:

base, divisibility, generalized smoothly oscillating numbers

Abstract

In this article, for a fixed base d >= 2, we present and analyze some properties associated with the class of smoothly undulating numbers of the form [ab_n]_d, which we will call NSOG. We provide Binet's Formula for every NSOG. In particular, we study the divisibility or multiplicity relationship between two NSOG numbers. In NSOGs, those formed only by 1 and 0, in any base d >= 2, are highlighted, and we denote them by [10_n]_d. Regarding these numbers [10_n]_d, we show that none of them is prime in base 10. Furthermore, we present an algorithm for calculating the GCD between two numbers [10_n]_d, with n odd. Additionally, we show that the difference between two NSOG numbers is a perfect square. Finally, we present the connection between NSOGs and monodigit, repunit, and triangular numbers.

Downloads

Download data is not yet available.

Author Biographies

References

BARRY, Paul. Expansion of 1/((1-x)*(1-100*x)). The on-line encyclopedia of integer sequences, 22 abr. 2004. Disponível em: http://oeis.org/A094028. Acesso em: 9 jan. 2024.

BEMM, Laerte; BEMM, Priscila Costa Ferreira Jesus. Potências de p em bases da forma 2p. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 9, n. 2, p. e3003, 2023. DOI: https://doi.org/10.35819/remat2023v9i2id6625.

CARVALHO, Fernando S.; COSTA, Eudes A. Um passeio pelos números ondulantes. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 8, n. 2, p. e3001, 2022. DOI: http://doi.org/10.35819/remat2022v8i2id6043.

COSTA, Eudes A.; COSTA, Grieg A. Existem números primos na forma 101... 101. Revista do Professor de Matemática, n. 103, p. 21-22, 2021.

COSTA, Eudes A.; SANTOS, Douglas C.; BEZERRA, César S. Algumas propriedades aritméticas das repunidades generalizadas. Revista de Matemática da UFOP, v. 2, p. 37-47, 2023. Disponível em: https://periodicos.ufop.br/rmat/article/view/6827. Acesso em 8 out. 2024.

COSTA, Eudes A.; SOUZA, Arthur B. Números ondulantes na forma 101... 101. Gazeta de Matemática, n. 202, p. 12-19, 2024. Disponível em: https://gazeta.spm.pt/fichaartigo?id=1682. Acesso em 8 out. 2024.

DOMINGUES, Hygino H. Fundamentos de Aritmética. 1. ed. São Paulo: LTDA, 1991.

FOMÍN, Serguei V. Sistemas de Numeración: Lecciones populares de matemáticas. Tradução: VEGA, Carlos. 1. ed. Moscú: Editorial MIR, 1975.

HEFEZ, Abramo. Aritmética. 2. ed. Rio de Janeiro: Sociedade Brasileira de Matemática, RJ, 2016.

HOGGATT, Verner E.; BICKNELL, Marjorie. Triangular Numbers. In: The Fibonacci Quarterly, v. 12, n. 3, p. 221-230, 1974. Disponível em: https://www.fq.math.ca/Scanned/12-3/hoggatt.pdf. Acesso em: 8 out. 2024.

NIVEN, Ivan; ZUCKERMAN, Hebert S.; MONTGOMERY, Hugh L. An Introduction to the Theory of Numbers. 5. ed. New York: Wiley, 1991.

PICKOVER, Clifford A. Is There a Double Smoothly Undulating Integer? Journal of Recreational Mathematics, v. 22, n. 1, p. 52-53, 1990.

PICKOVER, Clifford A. Keys to Infinity. New York, 1995. Chapter 20.

PICKOVER, Clifford A. Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning. Oxford University Press, 2003. Chapters 52 and 88.

PORTO, Elias C. Números Suavemente Ondulantes Generalizados. Orientador: Eudes Antonio Costa. 2023. 63 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Universidade Federal do Tocantins, Arraias, 2023.

PUTNAM Problems. 50th Putnam 1989. Disponível em: https://prase.cz/kalva/putnam.html. Acesso em: 9 jan. 2024.

ROBINSON, D. F. There are no double smoothly undulating integers in both decimal and binary representation. Journal of Recreational Mathematics, v. 26, n. 2, p. 102-103, 1994.

SANTOS, Douglas C.; COSTA, Eudes A. Peculiarities of smoothly undulating number. INTERMATHS, v. 4, n. 2, p. 38-53, 2023.

SANTOS, Ronaldo A.; COSTA, Eudes A. Números de ball generalizados. Revista Sergipana de Matemática e Educação Matemática, v. 7, n. 1, p. 61-85, 2022. DOI: https://doi.org/10.34179/revisem.v7i1.16202.

SHIRRIFF, Ken. Comments on Double Smoothly Undulating Integers. Journal of Recreational Mathematics, v. 26, n. 2, p. 103-104, 1994.

Published

2024-10-25

Issue

Section

Mathematics

How to Cite

Generalized smoothly oscillating numbers. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 10, n. 2, p. e3008, 2024. DOI: 10.35819/remat2024v10i2id7045. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7045.. Acesso em: 31 oct. 2024.

Similar Articles

61-70 of 90

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)