Continued fraction applied to obtain good approximations of the square root and Euler number

Authors

DOI:

https://doi.org/10.35819/remat2024v10i2id6916

Keywords:

continued fractions, good approximation, quadratic irrationals, periodic continued fraction, Euler number

Abstract

This is a bibliographical review that provides a brief glimpse into the beauty of continued fractions and how they can be very useful, both in obtaining good rational approximations of a given real number and in their representation as a continued fraction. Furthermore, it presents important properties, such as the relationship between quadratic irrationals and periodic continued fractions. On the other hand, with a view to a potential introduction of this topic in elementary education, a method for obtaining square root approximations through continued fractions is presented. Finally, using more advanced tools, we present an infinite continued fraction representation of the Euler number, which consequently implies the irrationality of e.

Downloads

Download data is not yet available.

Author Biographies

References

BESKIN, N. M. Fascinating Fraction. Translated from the Russian by V. I. Kisin. Moscow: Mir Publishers, 1986.

BREZINSKI, Claude. History of Continued Fractions and Pade Approximants. [S. l.]: Springer, 1991. Springer Series in Computational Mathematics, v. 12.

COLLINS, Darren C. Continued Fractions. MIT Undergraduate Journal of Mathematics, 2001. Disponível em: https://web.archive.org/web/20011120064343/http://www-math.mit.edu/phase2/UJM/vol1/COLLIN~1.PDF. Acesso em: 26 jul. 2024.

MARTINEZ, Fabio Brochero; MOREIRA, Carlos Gustavo; SALDANHA, Nicolau; TENGAN, Eduardo. Teoria dos Números: um passeio com primos e outros números familiares pelo mundo inteiro. Rio de Janeiro: IMPA, 2013.

MOLLIN, Richard A. Frações Contínuas e Palindromia. Matemática Universitária, [s. l.], n. 26-27, p. 29-47, jun.-dez. 1999. Disponível em: https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n26_n27_Artigo02.pdf. Acesso em: 11 jul. 2024.

MOREIRA, Carlos Gustavo T. de A. Frações contínuas, representações de números e aproximações diofantinas. In: COLÓQUIO DE MATEMÁTICA DA REGIÃO SUDESTE, 1., abr. 2011, São João del Rey. Anais [...]. Rio de Janeiro: IMPA, 2011. p. 1-39. Disponível em: http://emis.icm.edu.pl/journals/em/docs/coloquios/SE-1.06.pdf. Acesso em: 24 set. 2023.

Published

2024-07-26

Issue

Section

Mathematics

How to Cite

BOCKER NETO, Carlos; BEZERRA, Rafael Tavares Silva. Continued fraction applied to obtain good approximations of the square root and Euler number. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 10, n. 2, p. e3002, 2024. DOI: 10.35819/remat2024v10i2id6916. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6916.. Acesso em: 22 nov. 2024.

Similar Articles

1-10 of 298

You may also start an advanced similarity search for this article.