Fração contínua aplicada à obtenção de boas aproximações da raiz quadrada e do número de Euler
DOI:
https://doi.org/10.35819/remat2024v10i2id6916Palavras-chave:
frações contínuas, boa aproximação, irracionais quadráticos, fração contínua periódica, número de EulerResumo
Este é um trabalho de revisão bibliográfica que traz um breve vislumbre da beleza das frações contínuas e como elas podem ser muito úteis, tanto na obtenção de boas aproximações racionais de um determinado número real como na sua representação em forma de fração contínua. Além disso, apresenta propriedades importantes, como a relação entre irracionais quadráticos e frações contínuas periódicas. Por outro lado, visando uma potencial introdução deste tema no ensino fundamental, é apresentado um método para obtenção de aproximações de raízes quadradas através de frações contínuas. Finalmente, utilizando ferramentas mais avançadas, apresentamos uma representação em fração contínua infinita do número Euler, o que consequentemente implica a irracionalidade de e.
Downloads
Referências
BESKIN, N. M. Fascinating Fraction. Translated from the Russian by V. I. Kisin. Moscow: Mir Publishers, 1986.
BREZINSKI, Claude. History of Continued Fractions and Pade Approximants. [S. l.]: Springer, 1991. Springer Series in Computational Mathematics, v. 12.
COLLINS, Darren C. Continued Fractions. MIT Undergraduate Journal of Mathematics, 2001. Disponível em: https://web.archive.org/web/20011120064343/http://www-math.mit.edu/phase2/UJM/vol1/COLLIN~1.PDF. Acesso em: 26 jul. 2024.
MARTINEZ, Fabio Brochero; MOREIRA, Carlos Gustavo; SALDANHA, Nicolau; TENGAN, Eduardo. Teoria dos Números: um passeio com primos e outros números familiares pelo mundo inteiro. Rio de Janeiro: IMPA, 2013.
MOLLIN, Richard A. Frações Contínuas e Palindromia. Matemática Universitária, [s. l.], n. 26-27, p. 29-47, jun.-dez. 1999. Disponível em: https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n26_n27_Artigo02.pdf. Acesso em: 11 jul. 2024.
MOREIRA, Carlos Gustavo T. de A. Frações contínuas, representações de números e aproximações diofantinas. In: COLÓQUIO DE MATEMÁTICA DA REGIÃO SUDESTE, 1., abr. 2011, São João del Rey. Anais [...]. Rio de Janeiro: IMPA, 2011. p. 1-39. Disponível em: http://emis.icm.edu.pl/journals/em/docs/coloquios/SE-1.06.pdf. Acesso em: 24 set. 2023.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de acesso aberto: A REMAT é uma revista de acesso aberto, o que implica que todo o seu conteúdo está acessível sem custo para o usuário ou sua instituição. Os leitores têm permissão para visualizar, fazer download, copiar, distribuir, imprimir, pesquisar ou vincular aos textos completos dos artigos, bem como usá-los para qualquer outra finalidade legal, sem a necessidade de solicitar autorização prévia da revista ou dos autores. Essa declaração alinha-se com a definição de acesso aberto estabelecida pela Budapest Open Access Initiative (BOAI).