Benford’s Law applied to COVID-19 confirmed case numbers in different countries

Authors

  • Rhômulo Oliveira Menezes Universidade Federal do Pará (UFPA), Instituto de Educação Matemática e Científica (IEMCI), Programa de Pós-Graduação em Educação em Ciências e Matemáticas (PPGECM), Belém, PA, Brasil https://orcid.org/0000-0001-9042-8323

DOI:

https://doi.org/10.35819/remat2021v7i1id4586

Keywords:

COVID-19, Numbers of Confirmed Cases, Benford’s Law, Frequency Comparison Test

Abstract

Benford’s Law states that in sets of random numbers the prospect of the first digit of these numbers being 1 is greater than that of the following digits. Thus, the distribution proposed by Benford’s law shows that number 1 has approximately a 30.1% chance of being the first digit then the digit 2, with 17.6%, digit 3, with 12.5%, and so on, until number 9 is reached, having a 4.6% chance. In this context, the objective of the study is to verify whether this law applies to the numbers of confirmed cases of COVID-19 in different countries. The research, employing a quantitative method, treated and analyzed data collected on the World Health Organization (WHO) website, selecting the following countries, chosen randomly, according to the notoriety received in national and international media: China, Italy, New Zealand, Brazil and the United States of America (USA). To assess the discrepancy between the observed and expected relative frequencies, the frequency comparison test was used. The results found demonstrated that the numbers for China and New Zealand had calculated X² smaller than the critical X², while Italy, Brazil and the USA had calculated X² greater than the critical X², all at a 5% significance level. Consequently, it was concluded that Benford’s Law applied to the numbers of confirmed cases of COVID-19 disease in China and New Zealand, being rejected by the numbers of confirmed cases of COVID-19 disease in Italy, Brazil and the USA.

Downloads

Download data is not yet available.

Author Biography

  • Rhômulo Oliveira Menezes, Universidade Federal do Pará (UFPA), Instituto de Educação Matemática e Científica (IEMCI), Programa de Pós-Graduação em Educação em Ciências e Matemáticas (PPGECM), Belém, PA, Brasil

    Mestre em Educação em Ciências e Matemática pela Universidade Federal do Pará (UFPA). Doutorando em Educação em Ciências e Matemáticas pelo Programa de Pós-Graduação em Educação em Ciências e Matemáticas da Universidade Federal do Pará. Professor da Secretaria de Educação do Estado do Pará (SEDUC/PA). Temas de pesquisa: Modelagem Matemática; Tecnologias Digitais voltadas para o Ensino de Matemática; Educação Online.

References

BENFORD, F. The law of anomalous numbers. Proceedings of The American Philosophical Society, v. 78, p. 551-572, 1938. Disponível em: https://www.jstor.org/stable/984802. Acesso em: 01 jul. 2020.

CAMPOS, R. C; WODEWOTZKI, M. L. L.; JACOBINI, O. R. Educação Estatística: teoria e prática em ambientes de modelagem matemática. Coleção Tendências em Educação Matemática. 2. ed. Belo Horizonte: Autêntica, 2013.

CARMO, H.; FERREIRA, M. M. Metodologia da investigação: guia para auto-aprendizagem. 2. ed. Lisboa-PT: Universidade Aberta, 2008.

CUNHA, F. C. R. da. Aplicações da lei Newcomb-Benford à auditoria de obras públicas. Orientador: Maurício Soares Bugarin. 2013. 486f. Dissertação (Mestrado em Regulação e Gestão de Negócios) - Universidade de Brasília, Brasília, 2013. Disponível em: https://repositorio.unb.br/handle/10482/16379. Acesso em: 20 dez. 2020.

MEBANE, W. R. Election Forensics: vote counts and Benford’s Law. Papers, Posters and Syllabi, The Society Political Methodology, n. 620, 2006.

MEBANE, W. R. Note on the presidential election in Iran. Michigan: University of Michigan, 2009.

NEWCOMB, S. Note on the frequency of use of the different digits in natural Numbers. American Journal of Mathematics, v. 4, n. 1, p. 39-40, 1881. DOI: https://doi.org/10.2307/2369148.

NIGRINI, M. J. The detection of income tax evasion through an analysis of digital frequencies. Tese (Ph.D.) – University of Cincinnati, Cincinnati, OH. 1992.

NIGRINI, M. J. Digital analysis using Benford’s Law: Tests statistics for auditors. Global Audit Publication. Berlim, Heidelberg: Springer, 2000.

NIGRINI, M. J. Benford’s law. Applications for Forensic Accounting, Auditing and Fraud Detection. Hoboken, New Jersey: John Wiley & Sons, 2012.

OMS. World Health Organization. Disponível em: https://covid19.who.int/. Acesso em: 12 e 16 set. de 2020.

RAUCH, B.; BRÄHLER, G.; GÖTTSCHE, M.;ENGEL, S. Fact and fiction in EU-Governmental Economic Data. German Economic Review, v. 12, n. 3, p. 243-255, 2011. DOI: https://doi.org/10.1111/j.1468-0475.2011.00542.x.

Published

2021-02-05

Issue

Section

Mathematics

How to Cite

MENEZES, Rhômulo Oliveira. Benford’s Law applied to COVID-19 confirmed case numbers in different countries. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3005, 2021. DOI: 10.35819/remat2021v7i1id4586. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4586.. Acesso em: 22 nov. 2024.

Similar Articles

1-10 of 306

You may also start an advanced similarity search for this article.