Ovaloids in parameter space

Authors

DOI:

https://doi.org/10.35819/remat2021v7i1id4191

Keywords:

Global Geometry, Gaussian Curvature, Parameter Space, Morse Theory

Abstract

The topological dynamics induced by geometric inversions in the complex plane has already been addressed and the results were presented by Vieira et al. (2017). Subsequently, it was proved that, for a set of three inversions, the parameter space of the Markov measure supported by the attractor of the system is an open subset in R3 clad by compact level surfaces defined by metric entropy: isentropic surfaces (VIEIRA et al., 2018). The purpose of this article is to use Morse Theory to describe the global geometry of those surfaces. As functions of the levels, we proved that the area and diameter tend to zero and that the Gaussian curvature is unbounded, when the levels approach the critical level (maximum entropy). In particular, we demonstrated that there is a maximal open range of levels for which the surfaces are ovaloid.

Downloads

Download data is not yet available.

Author Biographies

  • Arlane Manoel Silva Vieira, Universidade Federal do Maranhao (UFMA), Campus Universitário de Codó, Codó, MA, Brasil
  • Mauricio Cardoso Souza, Universidade Federal do Maranhão (UFMA), São Luís, MA, Brasil

    Estudante do Curso de Engenharia Civil.

  • Otávio Carvalho, Universidade Federal do Maranhão (UFMA), São Luís, MA, Brasil

References

APOSTOL, Tom M. Cálculo. v. 2, 1. ed. Barcelona: Editorial Reverté, 1981.

CARMO, M. P. do. Geometria diferencial de curvas e superfícies. 4. ed. Rio de Janeiro: SBM, 2010.

LEIGHTON, Walter. On Liapunov functions with a single critical point. Pacific Journal of Mathematics, v. 19, n. 3, p. 467-472, 1966. DOI: http://dx.doi.org/10.2140/pjm.1966.19.467.

MARKOWSKY, G. Misconceptions about the Golden Ratio. The College Mathematics Journal, v. 23, n. 1, p. 2-19, 1992. DOI: https://doi.org/10.1080/07468342.1992.11973428.

MILNOR, J. Morse Theory. Princeton: Princeton University Press, 1973.

MUMFORD, D.; SERIES, C.; WRIGHT, D. Indra's Pearl: The Vision of Felix Klein. Cambridge: Cambridge University Press, 2002.

O'NEILL, Barret. Elementary Differential Geometry. 2. ed. rev. Elsevier, 2006.

RUDIN, W. Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics. 3. ed. McGraw-Hill, 1976.

VIEIRA, A.; MANDELA, L.; FERNANDES, P.; MOURA, V. Entropia máxima em inversões geométricas. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, v. 4, n. 1, p. 174-183, ago. 2018. DOI: https://doi.org/10.35819/remat2018v4i1id2585.

VIEIRA, A.; MANDELA, L.; FERNANDES, P.; MOURA, V. Geometria plana, cadeia de Markov e caos. Revista Eletrônica Paulista de Matemática, Bauru, v. 11, p. 34-47, dez. 2017. DOI: https://doi.org/10.21167/cqdvol11201723169664avlmpfvm3447.

Published

2021-03-12

Issue

Section

Mathematics

How to Cite

VIEIRA, Arlane Manoel Silva; SOUZA, Mauricio Cardoso; CARVALHO, Otávio. Ovaloids in parameter space. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3007, 2021. DOI: 10.35819/remat2021v7i1id4191. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4191.. Acesso em: 22 nov. 2024.

Similar Articles

11-20 of 62

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)