Comparações entre os conjuntos de soluções de Carathéodory e de Sentis
DOI:
https://doi.org/10.35819/remat2019v5i2id3404Keywords:
Equações diferenciais descontínuas, Soluções generalizadas, Solução de Carathéodory, Solução de SentisAbstract
No presente trabalho são estudadas as soluções generalizadas de Carathéodory e de Sentis para equações diferenciais descontínuas. Dessa forma, são estudadas relações entre os conjuntos de soluções de Carathéodory e de Sentis. A partir de resultados da literatura, são estabelecidos aqui resultados análogos para relações entre as soluções de Carathéodory e de Sentis. Assim, estabelecendo analogias com resultados da literatura, são obtidas aqui comparações entre os conjuntos de soluções de Carathéodory e de Sentis.Downloads
References
AUBIN, J.-P.; CELLINA, A. Differential inclusions. Berlin: Springer-Verlag, 1984.
BACCIOTTI, A. Generalized solutions of differential inclusions and stability. Italian Journal of Pure and Applied Mathematics, v. 17, p. 183-192, 2005.
BACCIOTTI, A. Some remarks on generalized solutions of discontinuous differential equations. International Journal of Pure and Applied Mathematics, v. 10, n. 3, p. 257-266, 2004.
CERAGIOLI, F. Some remarks on stabilization by means of discontinuous feedbacks. Systems & Control Letters, v. 45, n. 4, p. 271-281, 2002.
CODDINGTON, E. A.; LEVINSON, N. Theory of ordinary differential equations. New York: McGraw-Hill, 1955.
FILIPPOV, A. F. textbf{Differential equations with discontinuous righthand sides}. Dordrecht: Kluwer, 1988.
HAJEK, O. Discontinuous differential equations. I. Journal of Differential Equations, v. 32, p. 149-170, 1979.
HALE, J. K. Ordinary differential equations. Huntington: Robert E. Krieger Publishing Co., 1980.
HOBSON, E. W. The theory of functions of a real variable. Vol. I, New York: Dover, 1957.
HU, S. Differential equations with discontinuous right-hand sides. Journal of Mathematical Analysis and Applications, v. 154, n. 2, p. 377-390, 1991.
KRBEC, P. On nonparasit generalized solutions of differential relations. v{C}asopis Pro Pv{e}stov'an'{i} Matematiky, v. 106, p. 368-372, 1981.
ROYDEN, H. L. Real analysis. New York: The Macmillan Co., 1963.
SENTIS, R. '{E}quations diff'{e}rentielles `a second membre mesurable. Unione Matematica Italiana. Bollettino. B. Serie V, v. 15, n. 3, p. 724-742, 1978.
SMIRNOV, G. V. Introduction to the theory of differential inclusions. Providence: American Mathematical Society, 2002.
SPRAKER, J. S.; BILES, D. C. A comparison of the Carath'eodory and Filippov solution sets. Journal of Mathematical Analysis and Applications, v. 198, n. 2, p. 571-580, 1996.
Downloads
Published
Issue
Section
License
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.