Polinômios de Chebyshev para equações integrais de Volterra-Fredholm do primeiro tipo
DOI:
https://doi.org/10.35819/remat2024v10i1id6699Palavras-chave:
polinômios de Chebyshev, equações integrais de Volterra-Fredholm, problema mal-posto, equações perturbadasResumo
Muitos métodos foram estudados e discutidos para a solução da equação integral de Volterra malposta e da equação integral de Fredholm mal-posta, mas não de ambas. Neste trabalho resolvemos numericamente a equação integral mal-posta de Volterra-Fredholm de primeiro tipo, substituída por sua equação perturbada, e resolvemos esta última usando os polinômios de Chebyshev de primeiro tipo, sendo que nessa resolução achamos esse método técnico melhor que a regularização de Tikhonov, mais simples e menos embaraçoso; essa simplicidade é verificada por meio de alguns exemplos.
Downloads
Referências
HADAMARD, J. Lectures on Cauchy's problem in linear partial differential equations. New Haven: Yale University Press, 1923. Available in: https://archive.org/details/lecturesoncauchy00hadauoft. Access at: February 5, 2024.
KUMAR, J.; MANCHANDA, P.; POOJA. Numerical solution of Fredholm integral equations of the first kind using Legendre wavelets collocation method. International Journal of Pure and Applied Mathematics. v. 117, n. 1, p. 33-43, 2017. DOI: https://doi.org/10.12732/ijpam.v117i1.4.
LAKHAL, A.; NADIR, M.; NADIR, M. N. Application of Chebyshev polynomials to Volterra-Fredholm integral equations. Australian Journal of Mathematical Analysis and Applications. v. 19, n. 2, p. 1-8, 2022. Available in: https://ajmaa.org/searchroot/files/pdf/v19n2/v19i2p8.pdf. Access at: February 5, 2024.
LAMM, P. K. A Survey of Regularization Methods for First-Kind Volterra Equations. Vienna, New York: Springer, 2000, p. 53-82. Available in: https://users.math.msu.edu/users/lamm/Preprints/Mt_Holyoke_Survey/index.html. Access at: February 5, 2024.
MALEKNEJAD, K.; KAJANI, M. T.; MAHMOUDI, Y. Numerical solution of linear Fredholm and Volterra integral equations of the second kind using Legendre wavelets. Journal of Sciences, Islamic Republic of Iran. v. 13, n. 2, p. 161-166, 2002. Available in: https://journal.ut.ac.ir/article_31744_3af2254cc9e8b974559cf3ec796e9692.pdf. Access at: February 5, 2024.
NADIR, M.; BENDJABRI, N. On the invertibility of the Cauchy singular integral. International Journal of Mathematics and Computation. v. 29, n. 2, p. 113-118, 2018. Available in: http://www.ceser.in/ceserp/index.php/ijmc/article/view/5496. Access at: February 5, 2024.
NADIR, M.; DJAIDJA, N. Approximation method for Volterra integral equation of the first kind. International Journal of Mathematics and Computation. v. 29, n. 4, p. 67-72, 2018. Available in: http://www.ceser.in/ceserp/index.php/ijmc/article/view/5677. Access at: February 5, 2024.
NADIR, M.; DJAIDJA, N. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control and Optimization. v. 11, n. 4, p. 487-493, 2021. DOI: https://doi.org/10.3934/naco.2020039.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores detêm os direitos autorais dos artigos publicados e concedem à REMAT o direito de primeira publicação e distribuição de partes ou do trabalho como um todo com o objetivo de promover a revista. Os autores são autorizados a distribuir a versão publicada do artigo, como por exemplo em repositórios institucionais, desde que façam menção de publicação inicial nesta revista a partir da disponibilização do DOI do artigo.
Os artigos são publicados sob a licença Creative Commons Attribution 4.0 International License (CC BY 4.0). Isso permite que o conteúdo seja utilizado para criação de novos trabalhos, tanto para fins comerciais quanto não comerciais, desde que seja feita a devida atribuição ao autor original, conforme especificado na licença.