Nuevos Esquemas en Diferencias Finitas para la Ecuación de Helmholtz

Autores/as

DOI:

https://doi.org/10.35819/remat2024v10iespecialid7019

Palabras clave:

ecuación de Helmholtz, método de diferencias finitas, análisis de dispersión, polución del error, estabilización

Resumen

La ecuación escalar de Helmholtz describe los armónicos temporales de las ondas acústicas. Es bien conocido que los métodos de diferencias finitas y de elementos finitos presentan el efecto de polución del error para números de onda medios y altos. En este trabajo se analizan tres nuevos esquemas de diferencias finitas centradas de segundo orden de precisión en una y dos dimensiones. Estos nuevos esquemas son consistentes y se obtuvieron con nuevas aproximaciones sólo en el segundo término de la ecuación de Helmholtz. El análisis de dispersión, el comportamiento del error y los resultados numéricos muestran la eficacia de los Nuevos Esquemas 2 y 3. El Nuevo Esquema 3 es capaz de eliminar el efecto de polución del error en una dimensión y minimizar la dispersión de la onda plana en dos dimensiones.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

Referencias

ALVAREZ, Gustavo Benitez; LOULA, Abimael Fernando Dourado; CARMO, Eduardo Gomes Dutra do; ROCHINHA, Fernando Alves. A discontinuous finite element formulation for Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 195, n. 33-36, p. 4018-4035, July 2006. DOI: http://dx.doi.org/10.1016/j.cma.2005.07.013.

BABUSKA, Ivo; IHLENBURG, Frank; PAIK, Ellen T.; SAUTER, Stefan A.. A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 128, n. 3-4, p. 325-359, Dec. 1995. DOI: http://dx.doi.org/10.1016/0045-7825(95)00890-X.

BABUSKA, Ivo M.; SAUTER, Stefan A.. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? SIAM Journal on Numerical Analysis, Philadelphia, v. 34, n. 6, p. 2392-2423, 1997. DOI: http://dx.doi.org/10.1137/S0036142994269186.

CARMO, Eduardo Gomes Dutra do; ALVAREZ, Gustavo Benitez; LOULA, Abimael Fernando Dourado; ROCHINHA, Fernando Alves. A nearly optimal Galerkin projected residual finite element method for Helmholtz problem. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 197, n. 13-16, p. 1362-1375, Feb. 2008. DOI: http://dx.doi.org/10.1016/j.cma.2007.11.001.

FERNANDES, Daniel Thomes. Métodos de Diferenças Finitas e Elementos Finitos para o Problema de Helmholtz. Orientador: Abimael F. D. Loula. 2009. 126 f. Tese (Doutorado em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2009. Disponível em: https://tede.lncc.br/handle/tede/98. Acesso em: 20 jun. 2024.

HARARI, Isaac; HUGHES, Thomas J.R.. Finite element methods for the helmholtz equation in an exterior domain: Model problems. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 87, n. 1, p. 59-96, May 1991. DOI: http://doi.org/10.1016/0045-7825(91)90146-W.

IHLENBURG, Frank; BABUSKA, Ivo. Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. International Journal for Numerical Methods in Engineering, v. 38, n. 22, p. 3745-3774, Nov. 1995. DOI: http://dx.doi.org/10.1002/nme.1620382203.

IHLENBURG, Frank; BABUSKA, Ivo. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. Computers & Mathematics with Applications, Netherlands, v. 30, n. 9, p. 9-37, Nov. 1995. DOI: http://dx.doi.org/10.1016/0898-1221(95)00144-N.

LEVEQUE, Randall J.. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia: SIAM - Society for Industrial and Applied Mathematics, 2007. 341 p. ISBN 978-0-898716-29-0.

LOULA, Abimael Fernando Dourado; ALVAREZ, Gustavo Benitez; CARMO, Eduardo Gomes Dutra do; ROCHINHA, Fernando Alves. A discontinuous finite element method at element level for Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 196, n. 4-6, p. 867-878, Jan. 2007. DOI: http://dx.doi.org/10.1016/j.cma.2006.07.008.

NABAVI, Majid; SIDDIQUI, M.H. Kamran; DARGAHI, Javad. A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. Journal of Sound and Vibration, Netherlands, v. 307, n. 3-5, p. 972-982, Nov. 2007. DOI: http://dx.doi.org/10.1016/j.jsv.2007.06.070.

NUNES, Helder da Fonseca. Método Completo de Diferenças Finitas Centradas para a Equação de Helmholtz. Orientador: Gustavo Benitez Alvarez. Coorientador: Welton Alves de Menezes. 2024. 133 f. Dissertação (Mestrado em Modelagem Computacional em Ciência e Tecnologia) - Escola de Engenharia Industrial e Metalúrgica de Volta Redonda, Universidade Federal Fluminense, Volta Redonda, 2024. Disponível em: http://mcct.uff.br/documentos-teses. Acesso em: 23 jun. 2024.

ROCHINHA, Fernando Alves; ALVAREZ, Gustavo Benitez; CARMO, Eduardo Gomes Dutra do; LOULA, Abimael Fernando Dourado. A locally discontinuous enriched finite element formulation for acoustics. Communications in Numerical Methods in Engineering, United Kingdom, v. 23, n. 6, p. 623-637, June 2007. DOI: http://dx.doi.org/10.1002/cnm.946.

SINGER, I.; TURKEL, E.. High-order finite difference methods for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 163, n. 1-4, p. 343-358, Sept. 1998. DOI: http://dx.doi.org/10.1016/S0045-7825(98)00023-1.

SUTMANN, Godehard. Compact finite difference schemes of sixth order for the Helmholtz equation. Journal of Computational and Applied Mathematics, Netherlands, v. 311, n. 1, p. 15-31, June 2007. DOI: http://dx.doi.org/10.1016/j.cam.2006.03.008.

WU, Tingting. A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation. bf Journal of Computational and Applied Mathematics, Netherlands, v. 203, p. 497-512, Feb. 2017. DOI: http://dx.doi.org/10.1016/j.cam.2016.08.018.

WU, Tingting; XU, Ruimin. An optimal compact sixth-order finite difference scheme for the Helmholtz equation. Computers & Mathematics with Applications, Netherlands, v. 75, n. 7, p. 2520-2537, Apr. 2018. DOI: http://dx.doi.org/10.1016/j.camwa.2017.12.023.

Publicado

2024-06-28

Número

Sección

Dossiê: Modelagem Computacional em Ciência e Tecnologia

Cómo citar

Nuevos Esquemas en Diferencias Finitas para la Ecuación de Helmholtz. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 10, n. especial, p. e4001, 2024. DOI: 10.35819/remat2024v10iespecialid7019. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7019.. Acesso em: 19 nov. 2024.

Artículos similares

31-40 de 293

También puede Iniciar una búsqueda de similitud avanzada para este artículo.