Decreasing of the L^1 norm and mass conservation for Porous Medium Equations with advection
DOI:
https://doi.org/10.35819/remat2018v4i2id2959Palabras clave:
Mass Conservation, Decreasing of the $L^1$ Norm, Porous Medium EquationsResumen
In this paper, we show that the $L^1$ norm of the bounded weak solutions of the Cauchy problem for general degenerate parabolic equations of the form
u_t + div f(x,t,u) = div(|u|^{\alpha}\nabla u), x \in R^n , t > 0,
where \alpha > 0 is constant, decrease, under fairly broad conditions in advection flow f. In addition, we derive the mass conservation property for positive (or negative) solutions.Descargas
Referencias
BARRIONUEVO, J. A.; OLIVEIRA, L. S.; ZINGANO, P. R. General asymptotic supnorm estimates for solutions of one-dimensional advection-diffusion equations in heterogeneous media. International Journal of Partial Differential Equations, v. 2014, 8 p., DOI: http://dx.doi.org/10.1155/2014/450417.
BRAZ E SILVA, P.; MELO, W.; ZINGANO, P. R. An asymptotic supnorm estimate for solutions of 1-D systems of convection-diffusion equations. Journal of Differential Equations, v. 258, n. 8, p. 2806-2822, 2015. DOI: 10.1016/j.jde.2014.12.026.
DASKALOPOULOS, P.; KENIG, C. E.Degenerate Diffusions: initial value problems and local regularity theory. Zurich: European Mathematical Society, 2007.
DIBENEDETTO, E. Degenerate Parabolic Equations. New York: Springer, 1993.
DIBENEDETTO, E. On the local behavior of solutions of degenerate parabolic equations with measurable coefficients. Annali della Scuola Normale Superiore di Pisa, v. 13, p. 487-535, 1986.
DIEHL, N. M. L. Contributions to the theory of equations of porous media with advective terms(in Portuguese). PhD Thesis – Programa de Pós-Graduação em Matemática, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, September/2015.
FABRIS, L. On the global existence and supnorm estimates for nonnegative solutions of the porous medium equation with arbitrary advection terms (in Portuguese). PhD Thesis – Programa de Pós-Graduação em Matemática, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, October/2013.
HU, B. Blow-up Theories for Semilinear Parabolic Equations. Berlin: Springer, 2011.
QUITTNER, P.; SOUPLET, P. Superlinear Parabolic Problems: blow-up, global existence and steady states. Basel: Birkhauser, 2007.
SAMARSKII, A. A.; GALAKTIONOV, V. A.; KURDYUMOV, S.; MIKHAILOV, A. P. Blow-up in Quasilinear Parabolic Equations. Berlin: Walter de Gruyter, 1995.
URBANO, J. M. The Method of Intrinsic Scaling: a systematic approach to regularity for degenerate and singular PDEs. Lecture Notes in Mathematics. v. 1930. New York: Springer, 2008.
VÁZQUEZ, J. L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type. Oxford: Oxford University Press, 2006.
VÁZQUEZ, J. L. The Porous Medium Equation: mathematical theory. Oxford: Oxford University Press, 2007.
Descargas
Publicado
Número
Sección
Licencia
REMAT conserva los derechos de autor de los artículos publicados, teniendo derecho a la primera publicación del trabajo, mención de la primera publicación en la revista en otros medios publicados y distribución de partes o del trabajo en su conjunto con el fin de promover la revista.
Esta es una revista de acceso abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin solicitar permiso previo a la revista o al autor. Esta declaración está de acuerdo con la definición de BOAI de acceso abierto.