New Finite Difference Schemes for Helmholtz Equation

Authors

DOI:

https://doi.org/10.35819/remat2024v10iespecialid7019

Keywords:

Helmholtz equation, finite difference method, dispersion analysis, pollution error, stabilization

Abstract

The Helmholtz scalar equation describes the temporal harmonics of acoustic waves. It is well known that finite difference and finite element methods exhibit the effect of pollution error for medium and high wavenumber. In this work, three new centered finite difference schemes of second order precision in one and two dimensions are analyzed. These new schemes are consistent, and were obtained by new approximations only on the second term of the Helmholtz equation. Dispersion analysis, error behavior and numerical results show the good performance of New Schemes 2 and 3. New Scheme 3 is able to eliminate the pollution error effect in one dimension and minimize the dispersion of the plane wave in two dimensions.

Downloads

Download data is not yet available.

Author Biographies

References

ALVAREZ, Gustavo Benitez; LOULA, Abimael Fernando Dourado; CARMO, Eduardo Gomes Dutra do; ROCHINHA, Fernando Alves. A discontinuous finite element formulation for Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 195, n. 33-36, p. 4018-4035, July 2006. DOI: http://dx.doi.org/10.1016/j.cma.2005.07.013.

BABUSKA, Ivo; IHLENBURG, Frank; PAIK, Ellen T.; SAUTER, Stefan A.. A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 128, n. 3-4, p. 325-359, Dec. 1995. DOI: http://dx.doi.org/10.1016/0045-7825(95)00890-X.

BABUSKA, Ivo M.; SAUTER, Stefan A.. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? SIAM Journal on Numerical Analysis, Philadelphia, v. 34, n. 6, p. 2392-2423, 1997. DOI: http://dx.doi.org/10.1137/S0036142994269186.

CARMO, Eduardo Gomes Dutra do; ALVAREZ, Gustavo Benitez; LOULA, Abimael Fernando Dourado; ROCHINHA, Fernando Alves. A nearly optimal Galerkin projected residual finite element method for Helmholtz problem. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 197, n. 13-16, p. 1362-1375, Feb. 2008. DOI: http://dx.doi.org/10.1016/j.cma.2007.11.001.

FERNANDES, Daniel Thomes. Métodos de Diferenças Finitas e Elementos Finitos para o Problema de Helmholtz. Orientador: Abimael F. D. Loula. 2009. 126 f. Tese (Doutorado em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2009. Disponível em: https://tede.lncc.br/handle/tede/98. Acesso em: 20 jun. 2024.

HARARI, Isaac; HUGHES, Thomas J.R.. Finite element methods for the helmholtz equation in an exterior domain: Model problems. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 87, n. 1, p. 59-96, May 1991. DOI: http://doi.org/10.1016/0045-7825(91)90146-W.

IHLENBURG, Frank; BABUSKA, Ivo. Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. International Journal for Numerical Methods in Engineering, v. 38, n. 22, p. 3745-3774, Nov. 1995. DOI: http://dx.doi.org/10.1002/nme.1620382203.

IHLENBURG, Frank; BABUSKA, Ivo. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. Computers & Mathematics with Applications, Netherlands, v. 30, n. 9, p. 9-37, Nov. 1995. DOI: http://dx.doi.org/10.1016/0898-1221(95)00144-N.

LEVEQUE, Randall J.. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia: SIAM - Society for Industrial and Applied Mathematics, 2007. 341 p. ISBN 978-0-898716-29-0.

LOULA, Abimael Fernando Dourado; ALVAREZ, Gustavo Benitez; CARMO, Eduardo Gomes Dutra do; ROCHINHA, Fernando Alves. A discontinuous finite element method at element level for Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 196, n. 4-6, p. 867-878, Jan. 2007. DOI: http://dx.doi.org/10.1016/j.cma.2006.07.008.

NABAVI, Majid; SIDDIQUI, M.H. Kamran; DARGAHI, Javad. A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. Journal of Sound and Vibration, Netherlands, v. 307, n. 3-5, p. 972-982, Nov. 2007. DOI: http://dx.doi.org/10.1016/j.jsv.2007.06.070.

NUNES, Helder da Fonseca. Método Completo de Diferenças Finitas Centradas para a Equação de Helmholtz. Orientador: Gustavo Benitez Alvarez. Coorientador: Welton Alves de Menezes. 2024. 133 f. Dissertação (Mestrado em Modelagem Computacional em Ciência e Tecnologia) - Escola de Engenharia Industrial e Metalúrgica de Volta Redonda, Universidade Federal Fluminense, Volta Redonda, 2024. Disponível em: http://mcct.uff.br/documentos-teses. Acesso em: 23 jun. 2024.

ROCHINHA, Fernando Alves; ALVAREZ, Gustavo Benitez; CARMO, Eduardo Gomes Dutra do; LOULA, Abimael Fernando Dourado. A locally discontinuous enriched finite element formulation for acoustics. Communications in Numerical Methods in Engineering, United Kingdom, v. 23, n. 6, p. 623-637, June 2007. DOI: http://dx.doi.org/10.1002/cnm.946.

SINGER, I.; TURKEL, E.. High-order finite difference methods for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Netherlands, v. 163, n. 1-4, p. 343-358, Sept. 1998. DOI: http://dx.doi.org/10.1016/S0045-7825(98)00023-1.

SUTMANN, Godehard. Compact finite difference schemes of sixth order for the Helmholtz equation. Journal of Computational and Applied Mathematics, Netherlands, v. 311, n. 1, p. 15-31, June 2007. DOI: http://dx.doi.org/10.1016/j.cam.2006.03.008.

WU, Tingting. A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation. bf Journal of Computational and Applied Mathematics, Netherlands, v. 203, p. 497-512, Feb. 2017. DOI: http://dx.doi.org/10.1016/j.cam.2016.08.018.

WU, Tingting; XU, Ruimin. An optimal compact sixth-order finite difference scheme for the Helmholtz equation. Computers & Mathematics with Applications, Netherlands, v. 75, n. 7, p. 2520-2537, Apr. 2018. DOI: http://dx.doi.org/10.1016/j.camwa.2017.12.023.

Published

2024-06-28

Issue

Section

Dossiê: Modelagem Computacional em Ciência e Tecnologia

How to Cite

New Finite Difference Schemes for Helmholtz Equation. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 10, n. especial, p. e4001, 2024. DOI: 10.35819/remat2024v10iespecialid7019. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7019.. Acesso em: 19 nov. 2024.

Similar Articles

41-50 of 293

You may also start an advanced similarity search for this article.