Simulação numérica de um escoamento incompressível em uma cavidade quadrada utilizando o Método do Passo Fracionado e o Método da Penalidade
DOI:
https://doi.org/10.35819/remat2018v4i1id2678Keywords:
Equações de Navier-Stokes, Método das Diferenças Finitas, Método do Passo Fracionado, Método da Penalidade, Simulação NuméricaAbstract
A simulação numérica é amplamente utilizada na área de dinâmica dos fluidos, pois por meio do emprego de métodos numéricos pode-se analisar o comportamento de diferentes tipos de escoamentos de fluidos. Neste trabalho realizou-se a simulação numérica de um escoamento incompressível utilizando as equações de Navier-Stokes aplicadas para o escoamento de um fluido no interior de uma cavidade quadrada. Para a discretização dessas equações usou-se o método das Diferenças Finitas e para tratar o acoplamento da velocidade e pressão presentes nas equações de Navier-Stokes foram aplicados dois métodos: o método do Passo Fracionado e o método da Penalidade, facilitando assim a resolução dessas equações. Fazendo uso de um código escrito em linguagem C++ foram realizadas simulações de escoamentos bidimensionais para o número de Reynolds 100, 400 e 1.000. Os resultados numéricos deste trabalho foram comparados com os resultados de referência disponíveis na literatura. O método do Passo Fracionado foi o método que gerou resultados mais satisfatórios quando comparado com o método da Penalidade, baseado nos resultados de referência.
Downloads
References
BARROS, A. M.; MARTINS, S. B. C.; RENGEL, J. E.; SPHAIER, S. H. Estudo comparativo de diferentes métodos de desacoplamento pressão-velocidade nas equações de Navier-Stokes. In: CONGRESSO BRASILEIRO DE ENGENHARIA MECÂNICA, 15., 1999, São Paulo. Anais ... São Paulo: ABCM, 1999. Dísponivel em: http://abcm.org.br/anais/cobem/1999/portugues/AACJFB.htm. Acesso em: 07 jun. 2017.
BUK JÚNIOR, L. Estudo numérico do escoamento ao redor de um cilindro fixo. 2007. 62 f. Dissertação (Mestrado em Engenharia Mecânica) - Escola Politécnica da Universidade de São Paulo, São Paulo, 2007.
ÇENGEL, Y. A; CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. São Paulo: McGraw-Hill, 2007.
FORTUNA, A. O. Técnicas computacionais para dinâmica dos fluidos: conceitos básicos e aplicações. São Paulo: Edusp, 2000.
GHIA, U.; GHIA, K. N.; SHIN, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and multigrid method. Journal of Computational Physycs, Ohio, v. 48, p. 387-620, 1982.
HUGHES, T. J. R.; LIU, W. K.; BROOKS, A. Finite elements analysis of incompressible viscous flows by the penalty function formulation. Journal of Computational Physycs, Califórnia, v. 30, p. 1-60, 1979.
MENDES, R. Análise do acoplamento pressão-velocidade nas equações de Navier-Stokes utilizando o método dos volumes finitos baseado em elementos e solução acoplada. 2007. 102 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal de Santa Catarina, Florianópolis, 2007.
PASKIN, L. Solução computacional das equações de Navier-Stokes em uma formulação penalizada de elementos finitos. 2016. 51 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Naval e Oceânica) - Escola Politécnica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.
PEREZ GUERREIRO, J. S.; RAMOS, R.; PIMENTEL, L. C. G. Analytical solution of the lid driven cavity problem for Reynolds number tending towards zero. In: CONGRESSO BRASILEIRO DE ENGENHARIA MECÂNICA, 15., 1999, São Paulo. Anais ... São Paulo: ABCM, 1999. Dísponivel em: http://abcm.org.br/anais/cobem/1999/portugues/AAAIJI.htm. Acesso em: 04 jan. 2018.
SOUZA, M. M. Solução das equações de Navier-Stokes para fluidos incompressíveis via elementos finitos. 2013. 113 f. Dissertação (Mestrado em Matemática Aplicada) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2013.
ZILL, D. G.; CULLEN, M. R. Equações diferenciais. v. 1, 3. ed. São Paulo: Pearson Makron Books, 2001.
Downloads
Published
Issue
Section
License
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.