Entropia máxima em inversões geométricas
DOI:
https://doi.org/10.35819/remat2018v4i1id2585Keywords:
Entropia, Inversões Geométricas, Cadeia de Markov, Sistemas Dinâmicos, Teoria ErgódicaAbstract
Consideramos a dinâmica induzida por inversões em círculos e estudamos a dinâmica mensurável no atrator do sistema. Mostramos que a dinâmica induzida é metricamente equivalente a uma cadeia de Markov topológica e o pull-back da medida de Parry é a única medida invariante suportada no atrator com entropia métrica máxima.Downloads
References
VIEIRA, A.; MANDELA, L.; FERNANDES, P.; MOURA, V. Geometria Plana, Cadeia de Markov e Caos. In: SIMPÓSIO DE MATEMÁTICA E MATEMÁTICA INDUSTRIAL (SIMMI), 7., 2016, Catalão. Anais ... Catalão: IMTec/UFG/RC, 2016. p. 37-48.
VIEIRA, A.; MANDELA, L.; FERNANDES, P.; MOURA, V. Geometria Plana, Cadeia de Markov e Caos, CQD: Revista Eletrônica Paulista de Matemática, v. 11, dez. 2017 (no prelo).
VIANA, M.; OLIVEIRA, K. Fundamentos de Teoria Ergódica. Rio de Janeiro: SBM, 2014.
WALTERS, P. An introduction to Ergodic Theory. New York: Springer-Verlag, 2000.
KATOK, A.; HASSELBLATT, B. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995. (Encyclopedia of Mathematics and its Applications, 54).
APOSTOL, T. M. Calculus. v. 2. 2. ed. New York: John Wiley & Sons, 1969.
Downloads
Published
Issue
Section
License
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.