Tool for simulating tumor growth in various regions of the human body in three dimensions

Authors

DOI:

https://doi.org/10.35819/remat2024v10iespecialid7102

Keywords:

scientific computing, numerical methods and applications, cellular automaton, marching cubes, cancer

Abstract

Cancer is a disease characterized by the uncontrolled growth of abnormal cells in the body. It is a complex and multifaceted disease that has challenged researchers and doctors for decades. The ability to visualize and understand tumor growth can provide valuable insights into how cancer develops and spreads, leading to significant improvements in cancer diagnosis, treatment, and prevention. The three-dimensional tumor growth simulation tool that is being developed is an important step in this direction. It allows for detailed visualization of tumor growth in different parts of the human body, which can provide valuable insights into how cancer develops and spreads. Additionally, the ability of this tool to simulate tumor growth in different parts of the body means that it can be used to study a wide range of cancer types. This tool utilizes a cellular automaton and a small-world network to create connections between cells, allowing for a more accurate representation of organ and tumor structures. Furthermore, it allows for the loading of configurations and parameters from external files, providing great flexibility to the tool and allowing for customization of the simulation to the specific needs of each case. For 3D rendering, the Marching Cubes technique is used, which enables detailed and accurate three-dimensional representation of tumors.

Downloads

Download data is not yet available.

Author Biographies

  • Carlos Carret Miranda, University of Havana (UH), Department of Computer Science, Faculty of Mathematics and Computer Science, Havana, Cuba
  • Reinaldo Rodríguez-Ramos, University of Havana (UH), Department of Mathematics, Faculty of Mathematics and Computer Science, Havana, Cuba; Federal Fluminense University, PPG-MCCT, Volta Redonda, Rio de Janeiro, Brazil
  • Panters Rodríguez-Bermúdez, Universidade Federal Fluminense (UFF), Volta Redonda, RJ, Brasil

References

BARREDO, D. Viera. Autómata celular estocástico en redes complejas para el estudio de la invasión, migración y metástasis del cáncer. Tutores: Reinaldo Rodríguez Ramos; Ruben Interian; Ariel Ramírez Torres; Rocío Rodríguez Sánchez. 2019. 132 f. Trabajo de diploma (Licenciatura en Ciencia de la Computación) - Universidad de La Habana, La Habana, 2019. Available in: https://raw.githubusercontent.com/Krtucho/cellular_automata/main/docs/darien-tesis.pdf. Access at: July 5, 2024.

CIRNE, Marcos Vinícius Mussel; PEDRINI, H. Marching Cubes Technique for Volumetric Visualization Accelerated With Graphics Processing Units. Journal of the Brazilian Computer Society, São Paulo, v. 19, p. 223-233, 2013. DOI: https://doi.org/10.1007/s13173-012-0097-z.

DEUTSCH, Andreas; DORMANN, Sabine. Cellular Automaton Modelling of Biological Pattern Formation: Characterization, Applications, and Analysis. Boston: Springer, 2007. v. 8, p. 105-106. DOI: https://doi.org/10.1007/s10710-006-9021-7.

DORMANN, Sabine; DEUTSCH, Andreas. Modelling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biology, Osnabrück, v. 3, p. 393-406, 2002. Available in: https://pubmed.ncbi.nlm.nih.gov/12542422/. Access at: July 6, 2024.

HU, R.; RUAN, X. A simple cellular automaton model for tumor-immunity system. In: INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT SYSTEMS AND SIGNAL PROCESSING, 2003, Changsha. Proceedings [...]. [S. l.]: IEEE. v. 2, p. 1031-1035. Available in: https://ieeexplore.ieee.org/abstract/document/1285731. Access at: July 7, 2024.

INTERIAN, Ruben; RODRÍGUEZ-RAMOS, Reinaldo; VALDÉZ-RAVELO, Fernando; RAMÍREZ-TORRES, Ariel; RIBEIRO, Celso C.; CONCI, Aura. Tumor growth modelling by cellular automata. Mathematics and Mechanics of Complex Systems, [s. l.], v. 5, n. 3-4, p. 239-259, 2017. DOI: https://doi.org/10.2140/memocs.2017.5.239.

JIAO, Yang; TORQUATO, Salvatore. Emergent Behaviors from a Cellular Automaton Model for Invasive Tumor Growth in Heterogeneous Microenvironments. PLOS Computacional Biology, San Francisco, v. 7, n. 12, p. 1-14, 2011. DOI: https://doi.org/10.1371/journal.pcbi.1002314.

KANSAL, A. R.; TORQUATO, Salvatore; CHIOCCA, E. A.; DEISBOECK, T. S. Emergence of a Subpopulation in a Computational Model of Tumor Growth. Journal of Theoretical Biology,[s. l.], v. 207, n. 3, p. 431-441, 2000. DOI: https://doi.org/10.1006/jtbi.2000.2186.

KANSAL, A. R.; TORQUATO, S.; HARSH IV, G. R.; CHIOCCA, E. A.; DEISBOECK, T. S. Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton. Journal of Theoretical Biology, [s. l.], v. 203, n. 4, p. 367-382, 2000. DOI: https://doi.org/10.1006/jtbi.2000.2000.

LORENSEN, W. E.; CLINE, H. E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. ACM SIGGRAPH Computer Graphics, New York, v. 21, n. 4, p. 163-169, 1987. Available in: https://people.eecs.berkeley.edu/~jrs/meshpapers/LorensenCline.pdf. Access at: July 7, 2024.

VERHULST, Pierre F. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathematique et Physique, [s. l.], v. 10, p. 113-121, 1838.

VISUTSAK, Porawat. Marching Cubes and Histogram Pyramids for 3D Medical Visualization. Journal of Imaging, Bangkok, v. 6, n. 88, 2020. DOI: https://doi.org/10.3390/jimaging6090088.

WATTS, Duncan J.; STROGATZ, Steven H. Collective dynamics of "small-world" networks. Nature, [s. l.], v. 393, p. 440-442, 1998. DOI: https://doi.org/10.1038/30918.

Downloads

Published

2024-07-19

Issue

Section

Dossiê: Modelagem Computacional em Ciência e Tecnologia

How to Cite

MIRANDA, Carlos Carret; RODRÍGUEZ-RAMOS, Reinaldo; RODRÍGUEZ-BERMÚDEZ, Panters. Tool for simulating tumor growth in various regions of the human body in three dimensions. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 10, n. especial, p. e4011, 2024. DOI: 10.35819/remat2024v10iespecialid7102. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/7102.. Acesso em: 25 nov. 2024.

Similar Articles

11-20 of 48

You may also start an advanced similarity search for this article.