Poisson and Kirchhoff formulas deduced by control volumes

Authors

DOI:

https://doi.org/10.35819/remat2022v8i1id5516

Keywords:

Differential Equations, Integral Equations, Integral Transforms

Abstract

This paper presents an alternative deduction for the Poisson and Kirchhoff formulas, which solve the initial value problem defined by the wave equation in two and three dimensions, respectively. This deduction was inspired by a known approach for the one-dimensional case, associated with D'Alembert's formula and which is developed through an integration in a control volume defined in the domain of space and time. It is, therefore, an extension of that approach to two- and three-dimensional cases.

Downloads

Download data is not yet available.

Author Biography

References

BORTHWICK, D. Introduction to Partial Differential Equations. Universitext. [S. l.]: Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-48936-0.

COUTO, R. T. Sobre a Dedução da Equação da Onda e da Solução Segundo a Fórmula de Kirchooff. TEMA: Tendências em Matemática Aplicada e Computacional, São Carlos, v. 11, n. 1, p. 49-58, 2010. Disponível em: https://tema.sbmac.org.br/tema/article/view/112. Acesso em: 21 abr. 2022.

DOETSCH, G. Introduction to the Theory and Application of the Laplace Transform. Berlin: Springer, 1974. DOI: https://doi.org/10.1007/978-3-642-65690-3.

DYKE, P. P. G. An Introduction to Laplace Transforms and Fourier Series. Springer Undergraduate Mathematics Series. Berlin: Springer, 1999.

EVANS, L. C. Partial differential equations. Graduate Studies in Mathematics. v. 19. 2. ed. Providence, Rhode Island: American Mathematical Society, 2010.

FOLLAND, G. B. Introduction to Partial Differential Equations. Mathematical Notes. New Jersey: Princeton University Press, 1995.

FRITZ, J. Partial Differential Equations. Applied Mathematical Sciences. New York: Springer, 1982.

HOUNIE, J. Teoria Elementar das Distribuições. Rio de Janeiro: IMPA, 1979.

JOST, J. Partial Differential Equations. Graduate Texts in Mathematics. 3. ed. New York: Springer, 2012.

MELO, A. R.; GRAMANI, L. M.; KAVISKI, E. Esquema Explícito Semi-Analítico para a Solução da Equação da Onda Unidimensional com Condições de Contorno Naturais. TEMA: Tendências em Matemática Aplicada e Computacional, São Carlos, v. 20, n. 1, p. 77-93, 2019. DOI: https://doi.org/10.5540/tema.2019.020.01.77.

OLVER, P. J. Introduction to Partial Differential Equations. Undergraduate Texts in Mathematics. New York: Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-02099-0.

SCHIFF, J. L. The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics. Berlin: Springer, 1999.

SPIEGEL, M. R. Theory and Problems of Laplace Transforms. Schaum's Outline. New York: McGraw-Hill, 1965.

STRAUSS, W. A. Partial Differential Equations: An Introduction. United States of America: John Whiley & Sons, 1992.

Published

2022-04-24

Issue

Section

Mathematics

How to Cite

MELO, Adriano Rodrigues de. Poisson and Kirchhoff formulas deduced by control volumes. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 8, n. 1, p. e3005, 2022. DOI: 10.35819/remat2022v8i1id5516. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/5516.. Acesso em: 24 nov. 2024.

Similar Articles

11-20 of 46

You may also start an advanced similarity search for this article.