Uma abordagem elementar para uma descrição do subgrupo de Fitting e do radical solúvel de um grupo finito G
DOI:
https://doi.org/10.35819/remat2021v7i2id5193Palavras-chave:
Grupo, Grupo Nilpotente, Grupo Solúvel, Subgrupo de Fitting, Radical SolúvelResumo
Este trabalho apresenta uma abordagem que prioriza o uso dos Teoremas do Isomorfismo de Grupos para estudar os grupos solúveis e os grupos nilpotentes com vistas a descrever o radical solúvel S(G) como o maior subgrupo normal solúvel do grupo finito G e o subgrupo de Fitting F(G) como o maior subgrupo normal nilpotente de um grupo finito G. Como aplicação, mostramos que esta descrição nos permite verificar que S(G) e F(G) são exemplos de uma classe de subgrupos definida em Deaconescu e Walls (2011) para os quais vale uma generalização de um resultado clássico que relaciona um grupo G com seu grupo de automorfismos Aut(G).
Downloads
Referências
BURNSIDE, W. The Theory of Groups of Finite Order. 2. ed. Cambridge: Cambridge University Press, 1911.
CONRAD, B. Solvable and nilpotent groups. Notas de aula. [2011]. Disponível em: http://math.stanford.edu/~conrad/210BPage/handouts/SOLVandNILgroups.pdf. Acesso em: 12 ago. 2020.
CONRAD, K. Subgroup series II. Notas de aula. [entre 2015 e 2020]. Disponível em: https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries2.pdf. Acesso em: 14 ago. 2020.
DEACONESCU, M.; WALLS, G. L. On the group of automorphisms of a group. The American Matemathical Monthly, v. 118, n. 5, p. 452-455, maio 2011.
GALLIAN, J. A. Contemporary Abstract Algebra. 8. ed. Boston: Cengage Learning, 2013.
GARCIA, A.; LEQUAIN, Y. Elementos de Álgebra. Rio de Janeiro: IMPA, 2001.
GOMES, J. R. O. Grupos de Automorfismos de Grupos. Orientador: Marcello Fidélis. 2021. 34f. Monografia (Conclusão de Curso de Licenciatura em Matemática) - Departamento de Tecnologias e Linguagens, Instituto Multidisciplinar, Universidade Federal Rural do Rio de Janeiro, Nova Iguaçu, RJ, 2021.
HALL Jr., M. The Theory of Groups. New York: The Macmillan Company, 1959.
ROTMAN, J. J. Galois Theory. New York: Springer-Verlag, 1990.
ZASSENHAUS, H. The Thery of Groups. New York: Chelsea Publishing Company, 1949.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores detêm os direitos autorais dos artigos publicados e concedem à REMAT o direito de primeira publicação e distribuição de partes ou do trabalho como um todo com o objetivo de promover a revista. Os autores são autorizados a distribuir a versão publicada do artigo, como por exemplo em repositórios institucionais, desde que façam menção de publicação inicial nesta revista a partir da disponibilização do DOI do artigo.
Os artigos são publicados sob a licença Creative Commons Attribution 4.0 International License (CC BY 4.0). Isso permite que o conteúdo seja utilizado para criação de novos trabalhos, tanto para fins comerciais quanto não comerciais, desde que seja feita a devida atribuição ao autor original, conforme especificado na licença.