On non strictly diagonally dominant pentadiagonal matrices
DOI:
https://doi.org/10.35819/remat2024v10i2id7012Keywords:
Crout's method, pentadiagonal matrix, non strictly diagonally dominant matricesAbstract
Based on Crout's method, we will present, in this work, new non singularity criteria and sufficient conditions for existence of the LU factorization, for non strictly diagonally dominant pentadiagonal matrices. Crout's method is a recursive process of n stages that obtains the factorization A = LU of a pentadiagonal matrix of order n. In this recursive process of obtaining both the lower triangular matrix L and the upper triangular matrix U, the parameters alpha_i, 1 <= i <= n, must be non-zero to ensure that det(A) neq 0 and A = LU. Crout's recursive method is replaced by the analysis of sufficient conditions that can be verified simultaneously with low computational cost.
Downloads
References
ALMEIDA, C. G. de; REMIGIO, S. A. E. Non singularity criteria for non strictly diagonally dominant pentadiagonal matrices. In: CONGRESSO NACIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL, LXIII, 2023, Universidade Federal de Mato Grosso do Sul, Bonito/MS. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 10, n. 1, São Paulo: SBMAC, p. 010074-1 - 010074-7, 2023. DOI: https://doi.org/10.5540/03.2023.010.01.0074.
ALMEIDA, C. G. de; REMIGIO, S. A. E. Sufficient Conditions for Existence of the LU Factorization of Toeplitz Symmetric Tridiagonal Matrices. Trends in Computational and Applied Mathematics, São Carlos, SP, v. 24, n. 1, p. 177-190, Mar. 2023. DOI: https://doi.org/10.5540/tcam.2022.024.01.00177.
BANK, Randolph E.; ROSE, Donald J. Marching algorithms for elliptic boundary value problems. I: The constant coefficient case. SIAM Journal on Numerical Analysis, v. 14, n. 5, p. 792-829, 1977. DOI: https://doi.org/10.1137/0714055.
EL-MIKKAWY, Moawwad E. A. On the inverse of a general tridiagonal matrix. Applied Mathematics and Computation, v. 150, n. 3, p. 669-679, 2004. DOI: https://doi.org/10.1016/S0096-3003(03)00298-4.
FISCHER, Charlotte F.; USMANI, Riaz A. Properties of some tridiagonal matrices and their application to boundary value problems. SIAM Journal on Numerical Analysis, v. 6, n. 1, p. 127-142, 1969. DOI: https://doi.org/10.1137/0706014.
JOHNSON, Charles Royal; MARIJUÁN, Carlos; PISONERO, Miriam. Diagonal dominance and invertibility of matrices. Special Matrices, v. 11, n. 1, p. 20220181, 2023. DOI: https://doi.org/10.1515/spma-2022-0181.
KOLOTILINA, Liliya Yurievna. Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices. Linear Algebra and its Applications, v. 359, n. 1-3, p. 133-159, 2003. DOI: https://doi.org/10.1016/S0024-3795(02)00422-6.
MEURANT, Gérard. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM Journal on Matrix Analysis and Applications, v. 13, n. 3, p. 707-728, 1992. DOI: https://doi.org/10.1137/0613045.
ZHAO, Xi-Le; HUANG, Ting-Zhu. On the inverse of a general pentadiagonal matrix. Applied Mathematics and Computation, v. 202, n. 2, p. 639-646, 2008. DOI: https://doi.org/10.1016/j.amc.2008.03.004.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 César Guilherme de Almeida, Santos Alberto Enriquez Remigio
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.