Interactive hyperbolic constructions: metric relations and billiards

Authors

DOI:

https://doi.org/10.35819/remat2022v8i2id5889

Keywords:

Geometric Constructions, Hyperbolic Plane, Neutral Plane, Metric Relations, Billiards

Abstract

This paper explores the geometry of hyperbolic and, more generaly, neutral planes, through straightedge and ruler constructions executed in the Poincaré disk in the software GeoGebra. The Theorems of Ceva and Euler are verifyed in the hyperbolic plane, besides metric relations associated to centroids and orthocenters. The usual technique of folding and unfolding billiards trajectories in polygonal regions is established in the neutral plane, motivated by the drawing of minimizing polygonal paths as, for example, in Fagnano's problem. This tool makes possible to describe billiards in stripes and, partially, in acutangle triangles, showing how its properties relate with the plane being euclidean or hyperbolic. An elementary proof is provided of an uniqueness property of the orthic trajectory in hyperbolic acutangle triangles, and complete proofs are given about orthic triangles in neutral planes.

Downloads

Download data is not yet available.

Author Biographies

References

AKOPYAN, A. V. On some classical constructions extended to hyperbolic geometry. Matematicheskoe prosveshenie. Tret'ya seriya, v. 13, p. 155-170, 2009. DOI: https://doi.org/10.48550/arXiv.1105.2153.

BEARDON, A. F. The geometry of discrete groups. Graduate Texts in Mathematics, v. 91, New York: Springer-Verlag, 1983.

BOLDRIGHINI, C.; KEANE, M.; MARCHETTI, F. Billiards in polygons. The Annals of Probability, v. 6, n. 4, p. 532-540, 1978. Disponível em: https://www.jstor.org/stable/2243120. Acesso em: 21 dez. 2022.

BOTTEMA, O. On the medians of a triangle in hyperbolic geometry. Canadian Journal of Mathematics, v. 10, p. 502-506, 1958. DOI: https://doi.org/10.4153/CJM-1958-049-5.

COLOMBO, J.; DE SOUSA, D. D. Régua e Compasso na Geometria Hiperbólica. In: BIENAL DA SOCIEDADE BRASILEIRA DE MATEMÁTICA, 9., 2019, Juazeiro do Norte. Anais [...]. Rio de Janeiro: Sociedade Brasileira de Matemática, 2019. Notas de Oficina. Disponível em: https://www.professores.uff.br/jcolombo/wp-content/uploads/sites/124/2019/07/of04__compasso_hiperbolico_IX_bienal_SBM_2019.pdf. Acesso em: 19 dez. 2022.

COXETER, H. S. M.; GREITZER, S. L. Geometry revisited. Washington: The Mathematical Association of America, 1967.

GEOGEBRA. Materiais Didáticos. Hyperbolic Geometry in the Poincaré Disk. Disponível em: https://www.geogebra.org/m/R5e9AggU. Acesso em: 30 mar. 2022.

GOODMAN-STRAUSS, C. Compass and Straightedge in the Poincaré Disk. The American Mathematical Monthly, Washington, D.C., v. 108, n. 1, p. 38-49, 2001. DOI: https://doi.org/10.1080/00029890.2001.11919719.

GREENBERG, M. J. Euclidean and non-Euclidean geometries: Development and history. Berlin: Macmillan, 1993.

HARVEY, M. Geometry illuminated: an illustrated introduction to euclidean and hyperbolic plane geometry. MAA Press Textbooks. Washington, D.C.: The Mathematical Association of America, 2015.

HORVÁTH, A. G. On the hyperbolic triangle centers. Studies of the University of Zilina. Mathematical Series. v. 2014, p. 1-25, 2014. DOI: https://doi.org/10.48550/arXiv.1410.6735.

MARTIN, G. E. The Foundations of Geometry and the Non-Euclidean Plane. New York: Springer-Verlag, 1975.

MASUR, H.; TABACHNIKOV, S. Rational billiards and flat structures. In: HASSELBLATT, B.; KATOK, A. Handbook of Dynamical Systems, v. 1A, Amsterdã: Elsevier Science, 2002. p. 1015-1089.

MILLMAN, R. S.; PARKER, G. D. Geometry: a metric approach with models. 2. ed. Berlin: Springer Science & Business Media, 1991.

NAGAR, A.; SINGH, P. Finiteness in polygonal billiards on hyperbolic plane. Topological Methods in Nonlinear Analysis. v. 58, n. 2, p. 481-520, 2021. DOI: https://doi.org/10.12775/TMNA.2021.003.

PAPADOPOULOS, A.; SU, W. On hyperbolic analogues of some classical theorems in spherical geometry. In: FUJIWARA, K.; OHSHIKA, K.; KOJIMA, S. (ed.). Hyperbolic geometry and geometric group theory, Advanced Studies of Pure Mathematics, n. 73. Tokyo: Mathematical Society of Japan, 2017. p. 225-253. Disponível em: https://hal.archives-ouvertes.fr/hal-01630212. Acesso em: 16 dez. 2022.

PHILIPPAKIS, A. The Orthic Triangle and the O.K. Quadrilateral. The American mathematical monthly, Washington, D.C., v. 109, n. 8, p. 704-728, 2002. DOI: https://doi.org/10.1080/00029890.2002.11919903.

RIBEIRO, R.; GRAVINA, M. Disco de Poincaré: uma proposta para explorar geometria hiperbólica no GeoGebra. Revista Professor de Matemática Online, Rio de Janeiro, v. 1, n. 1, p. 53-66, 2013. DOI: https://doi.org/10.21711/2319023x2013/pmo15.

STRZHELETSKA, E. The Euler Line in non-Euclidean geometry. 2003, 63 f. Dissertação (Master of Arts in Mathematics) - California State University, San Bernardino, 2003. Disponível em: https://scholarworks.lib.csusb.edu/etd-project/2443. Acesso em: 16 dez. 2022.

TABACHNIKOV, S. Geometry and billiards. v. 30, 1. ed. Providence: American Mathematical Society, 2005.

VENEMA, G. A. Exploring Advanced Euclidean Geometry with GeoGebra. Washington, D.C.: American Mathematical Society, 2013.

WAGNER, E.; CARNEIRO, J. P. Q. Construções geométricas. 6. ed. Rio de Janeiro: Sociedade Brasileira de Matemática, 2007.

YAGLOM, I. M. Geometric transformations I. Tradução: A. Shields. Washington, D.C.: Mathematical Association of America, 1975. DOI: https://doi.org/10.5948/UPO9780883859254.001.

Published

2022-12-21

Issue

Section

Mathematics

How to Cite

Interactive hyperbolic constructions: metric relations and billiards. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 8, n. 2, p. e3002, 2022. DOI: 10.35819/remat2022v8i2id5889. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/5889.. Acesso em: 6 nov. 2024.

Similar Articles

21-30 of 43

You may also start an advanced similarity search for this article.