Numerical study of different methods applied to the one-dimensional transient heat equation

Authors

DOI:

https://doi.org/10.35819/remat2021v7i1id4767

Keywords:

Mathematical Modeling, Finite Difference Method, Convergence

Abstract

This article aims to compare the results obtained by applying three numerical methods: Explicit Euler, Crank-Nicolson,and Multi-stage (R11), in the one-dimensional heat diffusion transient equation with different initial and boundary conditions. The discretization process was performed using the finite difference method. In order to guarantee the convergence of the methods used, consistency and stability were verified by Lax theorem. The results are presented in graphs and tables that contain the data of the analytical solution and the numerical solutions. It was observed that the results obtained by R11 method generated solutions with minor errors.

Downloads

Download data is not yet available.

Author Biographies

References

ARAÚJO, J.; MÁRQUEZ, R. Simulação Numérica da Distribuição de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método de Crank-Nicolson. Cadernos do IME - Série Matemática, v. 6, n. 24, 2012. Available in: https://www.e-publicacoes.uerj.br/index.php/cadmat/article/view/11895. Access in: April 17, 2021.

BOYCE, W. E.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. Rio de Janeiro: Guanabara Dois, 1985.

CUMINATO, J. A.; MENEGUETTE, M. Discretização de equações diferenciais parciais: técnicas de diferenças finitas. Rio de Janeiro: Sociedade Brasileira de Matemática, 2013.

FARAGÓ, I.; PALENCIA, C. Sharpening the estimate of the stability constant in the maximum-norm of the Crank-Nicolson scheme for the one-dimensional heat equation. Applied Numerical Mathematics, v. 42, n. 1-3, p. 133-140, 2002. DOI: https://doi.org/10.1016/S0168-9274(01)00146-5.

FORTUNA, A. O. Técnicas Computacionais para Dinâmica dos Fluídos: Conceitos básicos e Aplicações. 2. ed. São Paulo: Editora da Universidade de São Paulo, 2012.

GAO, G. H.; SUN, Z. Z. Compact Difference Schemes for Heat Equation with Neumann Boundary Conditions (II). Numerical Methods for Partial Differential Equations. v. 29, n. 5, p. 1459–1486, 2012. DOI: https://doi.org/10.1002/num.21760.

GU, Y.; LEI, J.; FAN, C. M.; HE, X. Q. The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation. Engineering Analysis with Boundary Elements. v. 91, p. 74-81, 2018. DOI: https://doi.org/10.1016/j.enganabound.2018.03.013.

HAJIPOUR, M.; JAJARMI, A.; MALEK, A.; BALEANU, D. Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Applied Mathematics and Computation. v. 325, p. 146-158, 2018. DOI: https://doi.org/10.1016/j.amc.2017.12.026.

HORVÁTH, R. On the monotonicity conservation in numerical solutions of the heat equation. Applied Numerical Mathematics. v. 42, n. 1-3, p. 189-199, 2002. DOI: https://doi.org/10.1016/S0168-9274(01)00150-7.

KADALBAJOO, M. K.; AWASTHI, A. A numerical method based on Crank-Nicolson scheme for Burgers’ equation. Applied Mathematics and Computation. v. 182, n. 2, p. 1430-1442, 2006. DOI: https://doi.org/10.1016/j.amc.2006.05.030.

KAZEM, S.; DEHGHAN, M. Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations. v. 34, n. 2, p. 626-660, 2018. DOI: https://doi.org/10.1002/num.22218.

LADEIA, C. A.; ROMEIRO, N. M. L.; NATTI, P. L.; CIRILO, E. R. Formulações Semi-Discretas para a Equação 1D de Burgers. Tendências em Matemática Aplicada e Computacional. v. 14, n. 3, p. 319-331, 2013. DOI: http://dx.doi.org/10.5540/tema.2013.014.03.0319.

PEREIRA, A J.; LISBOA, N. da H.; DIAS FILHO, J. H. Análise da estabilidade do método explícito para discretização de equações diferenciais parabólicas por meio de diferenças finitas. C.Q.D.: Revista Eletrônica Paulista de Matemática, Bauru, v. 11, p. 1-10, 2017. DOI: http://dx.doi.org/10.21167/cqdvol11ic201723169664ajpnhljhdf0110.

SAITA, T. M.; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; CANDEZANO, M. A. C.; ACUNA, R. A. B.; MORENO, L. C. G. Simulação numérica da dinâmica de coliformes fecais no lago Luruaco, Colômbia. Tendências em Matemática Aplicada e Computacional. v. 18, n. 3, p. 435-447, 2018. DOI: https://doi.org/10.5540/tema.2017.018.03.435.

WANG, Y. B.; NAKAGAWA, C. J.; YAMAMOTO, M. A numerical method for solving the inverse heat conduction problem without initial value. Inverse Problems in Science and Engineering. v. 18, n. 5, p. 655-671, 2010. DOI: https://doi.org/10.1080/17415971003698615.

Downloads

Published

2021-04-20

Issue

Section

Mathematics

How to Cite

ROMEIRO, Neyva Maria Lopes Romeiro; BELINELLI, Eduardo Oliveira; MAGAGNIN, Jesika; NATTI, Paulo Laerte; CIRILO, Eliandro Rodrigues. Numerical study of different methods applied to the one-dimensional transient heat equation. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3012, 2021. DOI: 10.35819/remat2021v7i1id4767. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4767.. Acesso em: 22 nov. 2024.

Similar Articles

31-40 of 84

You may also start an advanced similarity search for this article.