Sobre conjuntos parcialmente ordenados
DOI:
https://doi.org/10.35819/remat2024v10i1id7008Palavras-chave:
conjunto parcialmente ordenado, conjunto totalmente ordenado, conjunto finitoResumo
Durante as aulas, é comum surgirem questionamentos curiosos sobre o conteúdo apresentado. Este artigo foi motivado pelas seguintes perguntas: Ao considerar um conjunto finito U munido de uma ordem parcial G contida em U x U, qual seria a maior (e menor) quantidade de elementos em G? Existe uma relação entre essa quantidade de elementos e a característica do par (U, G) ser um conjunto totalmente ordenado? Este artigo demonstra que (U, G) é totalmente ordenado se, e somente se, (U, G) é parcialmente ordenado e G possui n(n + 1)/2 elementos, sendo n a quantidade de elementos em U.
Downloads
Referências
O'CONNOR, J. J.; ROBERTON, E. F. A history of set theory. Escócia: School of Mathematics and Statistics, University of St Andrews, 1996. Disponível em: https://mathshistory.st-andrews.ac.uk/HistTopics/Beginnings_of_set_theory. Acesso em: 26 jan. 2024.
HALMOS, P. R. Naive Set Theory. Princeton, New Jersey: D. Van Nostrand Company, 1960.
HRBACEK, K.; JECH, T. Introduction to Set Theory. 3. ed. New York: Marcel Dekker, 1999.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 REMAT: Revista Eletrônica da Matemática
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores detêm os direitos autorais dos artigos publicados e concedem à REMAT o direito de primeira publicação e distribuição de partes ou do trabalho como um todo com o objetivo de promover a revista. Os autores são autorizados a distribuir a versão publicada do artigo, como por exemplo em repositórios institucionais, desde que façam menção de publicação inicial nesta revista a partir da disponibilização do DOI do artigo.
Os artigos são publicados sob a licença Creative Commons Attribution 4.0 International License (CC BY 4.0). Isso permite que o conteúdo seja utilizado para criação de novos trabalhos, tanto para fins comerciais quanto não comerciais, desde que seja feita a devida atribuição ao autor original, conforme especificado na licença.