Acerca de los conjuntos parcialmente ordenados
DOI:
https://doi.org/10.35819/remat2024v10i1id7008Palabras clave:
conjunto parcialmente ordenado, conjunto totalmente ordenado, conjunto finitoResumen
Durante las clases, es común que surjan preguntas intrigantes sobre el contenido presentado. Este artículo fue motivado por las siguientes preguntas: Al considerar un conjunto finito U equipado con un orden parcial G contenida en U x U, ¿cuál sería la mayor (y menor) cantidad de elementos en G? ¿Existe alguna relación entre esta cantidad de elementos y la naturaleza del par (U, G) como un conjunto totalmente ordenado? Este artículo demuestra que (U, G) está totalmente ordenado si, y solo si, (U, G) estáparcialmente ordenado y G contiene n(n + 1)/2 elementos, donde n representa la cantidad de elementos en U.
Descargas
Referencias
O'CONNOR, J. J.; ROBERTON, E. F. A history of set theory. Escócia: School of Mathematics and Statistics, University of St Andrews, 1996. Disponível em: https://mathshistory.st-andrews.ac.uk/HistTopics/Beginnings_of_set_theory. Acesso em: 26 jan. 2024.
HALMOS, P. R. Naive Set Theory. Princeton, New Jersey: D. Van Nostrand Company, 1960.
HRBACEK, K.; JECH, T. Introduction to Set Theory. 3. ed. New York: Marcel Dekker, 1999.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 REMAT: Revista Eletrônica da Matemática
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
REMAT conserva los derechos de autor de los artículos publicados, teniendo derecho a la primera publicación del trabajo, mención de la primera publicación en la revista en otros medios publicados y distribución de partes o del trabajo en su conjunto con el fin de promover la revista.
Esta es una revista de acceso abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin solicitar permiso previo a la revista o al autor. Esta declaración está de acuerdo con la definición de BOAI de acceso abierto.