Study of Ramsey's number R(3,10): analysis of graphs on 40 vertices

Authors

DOI:

https://doi.org/10.35819/remat2023v9i2id6424

Keywords:

graph theory, bicolor graphs, Ramsey numbers, click, independent set

Abstract

The Ramsey number R(k,l) is the smallest integer n such that there is no (k,l,n,e)-graph, where a (k,l,n,e)-graph denotes a graph G with n vertices and e edges and with C(G)<k e I(G)<l, where C(G) denotes the largest clique in G and I(G) denotes the largest independent set in G. The graph theory gave rise to extensive research, because no matter how simple the definition is, calculating the Ramsey numbers is an arduous task and few are known. Exoo (1989), Goedgebeur and Radziszowski (2013) showed that 40 <= R(3,10) <= 42. Thus, in this article, we will expose propositions that will be useful in the calculation of this Ramsey number. Based on the ideas of Grinstead and Roberts (1982) and Cariolaro (2007), properties and characteristics will be displayed for a bicolored graph of order 40, such that G is free of triangles, that is, C(G)<3, and does not have an independent set of order 10, that is, I(G)<10. We will show, for example, that given G = (V,E) a graph of order 40, such that C(G) < 3 and I(G) < 10, then, for every vertex v in V, we have that 4 <= deg(v) <= 9. Finally, we emphasize that the unpublished results obtained by the authors, in a research project developed at IFRS, Campus Alvorada, are found in Section 4.

Downloads

Download data is not yet available.

Author Biographies

References

AZEVEDO, D. S.; MEDEIROS, J. F. de; ZITZKE, D. C.; PEREIRA, R. R.; BERNARDINO, L. S. Análise de um método de coloração no estudo do número de Ramsey R(3,10). REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 8, n. 1, p. e3001, 2022. DOI: https://doi.org/10.35819/remat2022v8i1id4985.

CARIOLARO, D. On the Ramsey number R(3,6). Australasian Journal of Combinactorics, v. 37, p. 301-304, 2007. Disponível em: https://ajc.maths.uq.edu.au/pdf/37/ajc_v37_p301.pdf. Acesso em: 17 out. 2023.

DIESTEL, R. Graph Theory. 2. ed. eletronic edition. New York: Springer-Verlag, 2000.

EXOO, G. On Two Classical Ramsey Numbers of the Form R(3, n). SIAM Journal on Discrete Mathematics, v. 2, n. 4, p. 488-490, 1989. DOI: https://doi.org/10.1137/0402043.

GOEDGEBEUR, J.; RADZISZOWSKI, S. P. New Computational Upper Bounds for Ramsey Numbers R(3,k). Electronic Journal of Combinactorics, v. 20, n. 1, 2013. DOI: https://doi.org/10.37236/2824.

GREENWOOD, R. E.; GLEASON, A. M. Combinatorial Relations and Chromatic Graphs. Canadian Journal of Mathematics, v. 7, p. 1-7, 1955. DOI: https://doi.org/10.4153/CJM-1955-001-4.

GRINSTEAD, C. M.; ROBERTS, S. M. On the Ramsey numbers R(3,8) and R(3,9). Journal of Combinatorial Theory, v. 33, p. 27-51, 1982.

Radziszowski, S. Small Ramsey Numbers. The Electronic Journal of Combinatorics. 1994. Revisão de 2021. DOI: https://doi.org/10.37236/21.

RAMSEY, F. P. On a Problem of Formal Logic. Proceedings of the London Mathematical Society, v. 2, n. 30, p. 264-286, 1930. DOI: https://doi.org/10.1112/plms/s2-30.1.264.

SANCHES, J. Ferramentas probabilísticas aplicadas a problemas de coloração em grafos. Orientador: Carlos Hoppen. 2016. 151 f. Tese (Doutorado em Matemática Aplicada) – Universidade Federal do Rio Grande do Sul, Porto Alegre, dez. 2016. Disponível em: http://hdl.handle.net/10183/153219. Acesso em: 19 out. 2023.

SANCHES, J. Números de Ramsey em grafos multipartidos. Orientador: Emerson Luiz do Monte Carmelo. 2013. Dissertação (Mestrado em Matemática Aplicada) – Universidade Estadual de Maringá, Maringá, 2013.

SPENCER, J. H. Ramsey's Theorem: A New Lower Bound. Journal of Combinatorial Theory, Série A, v. 18, n. 1, p. 108-115, 1975. DOI: https://doi.org/10.1016/0097-3165(75)90071-0.

Published

2023-11-04

Issue

Section

Mathematics

How to Cite

ZITZKE, Daniel Coswig; AZEVEDO, Danielle Santos; MEDEIROS, Jonas Francisco de; BERNARDINO, Lenon Saturnino. Study of Ramsey’s number R(3,10): analysis of graphs on 40 vertices. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, Brasil, v. 9, n. 2, p. e3005, 2023. DOI: 10.35819/remat2023v9i2id6424. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6424.. Acesso em: 25 nov. 2024.

Similar Articles

1-10 of 293

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)