Stochastic modeling using the generalized distribution of extreme values and LH moments: an approach through free software R
DOI:
https://doi.org/10.35819/remat2021v7i2id5106Keywords:
GEV, extreme values, free software R, stochastic modelingAbstract
Generalized Extreme Value (GEV) distribution is used to modeling extreme natural events, such as rainfall, floods, wind speed and temperature. An important issue for GEV use is the choice of parameter estimation methodology. The commonly used methodologies are maximum likelihood and conventional moments. However, studies indicate that such methodologies do not always produce a reliable estimate of GEV parameters. In this sense, it is interesting to use LH moments, as they better characterize the upper tail of the distribution due to the emphasis given to the highest observed values. Nevertheless, there are no computational routines developed for GEV use combined with LH moments in free software. Therefore, this research aimed at developing a computational routine in free software R for stochastic modeling through GEV, using LH moments to estimate its parameters and verify goodness-of-fit. Maximum annual flow data available in the literature was used to demonstrate the applicability of the computational routine. This research contributes to disseminate the use of LH moments and facilitate stochastic modeling of extreme environmental events.
Downloads
References
ABU EL-MAGD, N. A. T. TL-moments of the exponentiated generalized extreme value distribution. Journal of Advanced Research, v. 1, n. 4, p. 351-359, 2010. DOI: https://doi.org/10.1016/j.jare.2010.06.003.
COLES, S. An introduction to statistical modeling of extreme values. London: Springer, 2001. 209 p.
GILLELAND, E.; RIBATET, M.; STEPHENSON, A. G. A software review for extreme value analysis. Extremes, v. 16, n. 1, p. 103-119, 2013. DOI: https://doi.org/10.1007/s10687-012-0155-0.
HOSKING, J. R. M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society: Series B (Methodological), v. 52, n. 1, p. 105-124, 1990. Disponível em: https://www.jstor.org/stable/2345653. Acesso em: 9 ago. 2021.
HOSKING, J. R. M.; WALLIS, J. R.; WOOD, E. F. Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, v. 27, n. 3, p. 251-261, 1985. DOI: https://doi.org/10.1080/00401706.1985.10488049.
JENKINSON, A. F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society, v. 81, n. 348, p. 158-171, abr. 1955. DOI: https://doi.org/10.1002/qj.49708134804.
KATZ, R. W.; PARLANGE, M. B.; NAVEAU, P. Statistics of extremes in hydrology. Advances in Water Resources, v. 25, n. 8-12, p. 1287-1304, ago./dez. 2002. DOI: https://doi.org/10.1016/S0309-1708(02)00056-8.
MARTINS, E. S.; STEDINGER, J. R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, v. 36, n. 3, p. 737-744, 1 mar. 2000. DOI: https://doi.org/10.1029/1999WR900330.
NAGHETTINI, M.; PINTO, E. J. A. Hidrologia estatística. Belo Horizonte: CPRM. 2007. 552 p.
PANSERA, W. A. Distribuição generalizada de chuvas máximas no Estado do Paraná. Orientador: Benedito Martins Gomes. Coorientadores: Marcio Antonio Vilas Boas e Miguel Angel Uribe-Opazo. 2013. 94 f. Tese (Doutorado em Engenharia Agrícola) - Programa de Pós-Graduação em Engenharia Agrícola, Universidade Estadual do Oeste do Paraná, Cascavel, 2013. Disponível em: http://tede.unioeste.br/handle/tede/2626. Acesso em: 9 ago. 2021.
QUEIROZ, M. M. F.; CHAUDHRY, F. H. Analysis of extreme hydrological events using GEV distribution and LH moments. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 10, n. 2, p. 381-389, 2006. DOI: https://doi.org/10.1590/S1415-43662006000200020.
R CORE TEAM. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2021. Disponível em: http://www.R-project.org. Acesso em: 27 abr. 2021.
RAO, A. R.; HAMED, K. H. Flood Frequency Analysis. Boca Raton, Flórida: CRC Press, 2000. 350 p.
WANG, Q. J. Approximate goodness-of-fit tests of fitted generalized extreme value distributions using LH moments. Water Resources Research, v. 34, n. 12, p. 3497-3502, 1 dez. 1998. DOI: https://doi.org/10.1029/98WR02364.
WANG, Q. J. LH moments for statistical analysis of extreme events. Water Resources Research, v. 33, n. 12, p. 2841-2848, 1997. Disponível em: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97WR02134. Acesso em: 9 ago. 2021.
WICKHAM, Hadley. Advanced R. Boca Raton, Florida: CRC, 2015. 456 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática
This work is licensed under a Creative Commons Attribution 4.0 International License.
REMAT retains the copyright of published articles, having the right to first publication of the work, mention of first publication in the journal in other published media and distribution of parts or of the work as a whole in order to promote the magazine.
This is an open access journal, which means that all content is available free of charge, at no cost to the user or his institution. Users are permitted to read, download, copy, distribute, print, search or link the full texts of the articles, or use them for any other legal purpose, without requesting prior permission from the magazine or the author. This statement is in accordance with the BOAI definition of open access.