Reconhecimento de padrões gráficos com o apoio do software Geogebra: os casos da convergência pontual e uniforme
DOI:
https://doi.org/10.35819/tear.v2.n2.a1800Resumo
Resumo: De modo particular, quando nos atemos ao caso da convergência de uma família ou sequência de funções , registramos nos livros de História da Matemática, o tortuoso esforço de figuras emblemáticas, tais como: Cauchy, Bolzano, Weierstrass; no sentido de indicar bases sólidas e consistentes para tal noção. Hodiernamente, verificamos a descrição de várias formas de convergência, segundo os autores de livros de Análise Real, dentre elas, sublinhamos a convergência simples (ou pontual) e a convergência uniforme . De modo específico, destacamos as recomendações de Lima (2010), com o intuito da identificação, distinção e compreensão dessas duas formas de convergência. Suas indicações, de natureza heurística, são significadas a partir da exploração de situações com o uso do software Geogebra. Com tal expediente, estruturamos situações que proporcionam: (i) o entendimento topológico do comportamento da família de funções (de modo local e global); (ii) a possibilidade de visualização de gráficos complexos e inexequiveis no ambiente lápis/papel; (iii) identificação visual da função candidata ao limite, em cada tipo de convergência; (iv) visualização da região do plano aonde ocorre a convergência uniforme. Com a presente discussão, questionamos a abordagem standard em Análise Real que restringe a atividade do aprendiz ao domínio e aplicação de definições formais, negligenciando o caráter intuitivo e heurístico desse conteúdo.
Palavras-chave: Convergência Pontual e Uniforme. Visualização. Geogebra. Ensino
PATTERN RECOGNITION GRAPH WITH SUPPORT OF SOFTWARE GEOGEBRA: THE CASE OF POINTWISE CONVERGENCE AND UNIFORM
Abstract: In particular, when we turn to the case of the convergence of a sequence or a family of functions , we registered in the history´ books of Mathematics, the tortuous effort of the emblematic figures such as Cauchy, Bolzano and Weierstrass, in order to indicate a solid and consistent for this notion. Currently, we check out the description of various forms of the convergence, according to the authors of books of Real Analysis, among them, we underline the simples convergence (or pointwise) and the uniform convergence . In the specific way, we highlight the recommendations of Lima (2010), with the aim of identifying, understanding and distinction of these two forms of convergence. Its indications in the heuristic nature, are meant from the exploration of situations using the software Geogebra. With such object, we estructured situations that provide: (i) the understanding of the topological behavior of the family of functions (so local and global); (ii) the possibility of visualizing complex graphics and unenforceable environmental pencil / paper, (iii) visual identification of candidate function to the limit in each type of convergence, (iv) the plan view of the region where the convergence is uniform. With this discussion, we question the standard approach in Real Analysis that restricts the activity of the learner to the domain and application of formal definitions, neglecting the character and intuitive heuristic that content.
Keywords: Pointwise and Uniform convergence. Visualization. Geogebra. Teaching.
.
Downloads
Downloads
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista a partir dos critérios abaixo:
CC BY-NC – Uso Não Comercial (NC): Os licenciados podem copiar, distribuir, exibir e executar a obra e realizar trabalhos derivados dela, desde que sejam para fins não comerciais .
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.