A mathematical model for the interaction of a virus with the plasma membrane of cell

Authors

  • Diogo Martins Gonçalves de Morais Faculdade de Tecnologia Termomecanica (FTT), São Bernardo do Campo, SP, Brasil

DOI:

https://doi.org/10.35819/remat2020v6i2id4149

Keywords:

Green’s Functions, Modeling, Problems with Boundary Conditions

Abstract

Understanding the interactions of viruses with cell membranes is important for the proposal of vaccines and treatments for diseases caused by this type of contamination. An example of this is the case of the pandemic caused by the new Covid-19, which in 2020 placed was responsible for a third of the world under virus quarantine, causing huge economic losses and thousand of deaths across the planet. In this context, this research proposes to build a mathematical model for the interaction of a virus with the plasma membrane in a mammalian cell, which leads to a mathematical problem with boundary conditions. Using Green’s functions, the model was able to answer what is the general expression for potential electrostatic energy of this interaction in terms of Bessel functions and Wigner coefficients. It is reasonable to speculate, based on the results presented by the model, that a virus has to present an effective charge resulting in a solution with a pH value of about 7 to approach the cell membrane, while an electrically neutral virus should not have the ability to interact and enter membranes. The values ?for the interaction energy and the force between the membrane and the cluster offer the order of magnitude of the distances over which such interaction is effective.

Downloads

Download data is not yet available.

Author Biography

Diogo Martins Gonçalves de Morais, Faculdade de Tecnologia Termomecanica (FTT), São Bernardo do Campo, SP, Brasil

Licenciado em Matemática pela Universidade Estadual Paulista, doutorado em Administração pela Universidade Municipal de São Caetano do Sul e pós-doutorado em Engenharia e Gestão da Inovação pela Universidade Federal do ABC. Atualmente é professor em regime integral da Fundação Salvador Arena e avaliador de cursos de graduação do Ministério da Educação. Tem experiência em modelagem matemática para Big Data, Cálculo Diferencial e Integral, Estatística, Matemática Financeira, Matemática Aplicada e Pesquisa Operacional.

References

ALBERTS, Bruce; JOHNSON, Alexander; LEWIS, Julian; MORGAN, David; RAFF, Martin; ROBERTS, Keith; WALTER, Peter. Molecular biology of the cell. 6. ed. New York: Garland Science, 2015.

ATKINS, Peter; PAULA, Julia de; KEELER, James. Atkins Physical Chemistry. Oxford: OUP, 2018.

FESHBACH, Herman; MORSE, Philip M.; MICHIO, Masujima. Methods of Theoretical Physics. Mineola, NY: Dover Publications, 2019.

HILL, Terrell L. An Introduction to Statistical Thermodynamics. New York: Dover Publications, 1987.

JACKSON, John David. Classical Eletrodynamics. New York: John Wiley & Sons, 1998.

MESSIAH, Albert. Mécanique Quantique. v. 2. Paris: Dunod, 1995.

MORAIS, D. M. G. Interações Eletrostáticas de Aglomerados Moleculares em Eletrólitos. 2005. 64 f. Dissertação (Mestrado em Biofísica Molecular) ? Universidade Estadual Paulista, São Paulo, 2005.

TESO, Alexandre; DRIGO FILHO, Elso. AGOSTINHO NETO, Augusto. Solution of the Poisson-Boltzmann equation for a system with four ionic species. Journal of Mathematcal Biology, v. 35, n. 7, p. 814-824, ago. 1997. DOI: https://doi.org/10.1007/s002850050078.

VERWEY, E. J. W.; OVERBEEK, J. T. G. Theory of the Stability of Lyophobic Colloids. New York: Elsevier Publishing Company, Inc., 1948.

Published

2020-12-17

How to Cite

MARTINS GONÇALVES DE MORAIS, D. A mathematical model for the interaction of a virus with the plasma membrane of cell. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 6, n. 2, p. e4007, 2020. DOI: 10.35819/remat2020v6i2id4149. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4149. Acesso em: 22 jul. 2024.

Issue

Section

Matemática Pura e/ou Aplicada