Estudo numérico de diferentes métodos aplicados à equação transiente do calor unidimensional

Autores

DOI:

https://doi.org/10.35819/remat2021v7i1id4767

Palavras-chave:

Modelo Matemático, Método de Diferenças Finitas, Convergência

Resumo

Este artigo tem por objetivo comparar os resultados obtidos pela aplicação de três métodos numéricos: Euler Explícito, Crank-Nicolson e Multi-estágio (R11), na equação transiente da difusão do calor unidimensional com diferentes condições iniciais e de contorno. O processo de discretização foi realizado pelo método de diferenças finitas. Para garantir a convergência dos métodos utilizados foi verificada a consistência e a estabilidade pelo Teorema de Lax. Os resultados são apresentados em gráficos e tabelas que contêm dados da solução analítica e das soluções numéricas. Observou-se que os resultados obtidos pelo método R11 gerou soluções com menores erros.

Downloads

Não há dados estatísticos.

Biografia do Autor

Neyva Romeiro, State University of Londrina (UEL), Department of Math and PGMAC, Londrina, PR, Brazil

Eduardo Oliveira Belinelli, Federal University of Paraná (UFPR), PPGMNE, Curitiba, PR, Brazil

Jesika Magagnin, Federal University of Paraná (UFPR), PPGMNE, Curitiba, PR, Brazil

Paulo Laerte Natti, State University of Londrina (UEL), Department of Math and PGMAC, Londrina, PR, Brazil

Eliandro Rodrigues Cirilo, State University of Londrina (UEL), Department of Math and PGMAC, Londrina, PR, Brazil

Referências

ARAÚJO, J.; MÁRQUEZ, R. Simulação Numérica da Distribuição de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método de Crank-Nicolson. Cadernos do IME - Série Matemática, v. 6, n. 24, 2012. Available in: https://www.e-publicacoes.uerj.br/index.php/cadmat/article/view/11895. Access in: April 17, 2021.

BOYCE, W. E.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. Rio de Janeiro: Guanabara Dois, 1985.

CUMINATO, J. A.; MENEGUETTE, M. Discretização de equações diferenciais parciais: técnicas de diferenças finitas. Rio de Janeiro: Sociedade Brasileira de Matemática, 2013.

FARAGÓ, I.; PALENCIA, C. Sharpening the estimate of the stability constant in the maximum-norm of the Crank-Nicolson scheme for the one-dimensional heat equation. Applied Numerical Mathematics, v. 42, n. 1-3, p. 133-140, 2002. DOI: https://doi.org/10.1016/S0168-9274(01)00146-5.

FORTUNA, A. O. Técnicas Computacionais para Dinâmica dos Fluídos: Conceitos básicos e Aplicações. 2. ed. São Paulo: Editora da Universidade de São Paulo, 2012.

GAO, G. H.; SUN, Z. Z. Compact Difference Schemes for Heat Equation with Neumann Boundary Conditions (II). Numerical Methods for Partial Differential Equations. v. 29, n. 5, p. 1459–1486, 2012. DOI: https://doi.org/10.1002/num.21760.

GU, Y.; LEI, J.; FAN, C. M.; HE, X. Q. The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation. Engineering Analysis with Boundary Elements. v. 91, p. 74-81, 2018. DOI: https://doi.org/10.1016/j.enganabound.2018.03.013.

HAJIPOUR, M.; JAJARMI, A.; MALEK, A.; BALEANU, D. Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Applied Mathematics and Computation. v. 325, p. 146-158, 2018. DOI: https://doi.org/10.1016/j.amc.2017.12.026.

HORVÁTH, R. On the monotonicity conservation in numerical solutions of the heat equation. Applied Numerical Mathematics. v. 42, n. 1-3, p. 189-199, 2002. DOI: https://doi.org/10.1016/S0168-9274(01)00150-7.

KADALBAJOO, M. K.; AWASTHI, A. A numerical method based on Crank-Nicolson scheme for Burgers’ equation. Applied Mathematics and Computation. v. 182, n. 2, p. 1430-1442, 2006. DOI: https://doi.org/10.1016/j.amc.2006.05.030.

KAZEM, S.; DEHGHAN, M. Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations. v. 34, n. 2, p. 626-660, 2018. DOI: https://doi.org/10.1002/num.22218.

LADEIA, C. A.; ROMEIRO, N. M. L.; NATTI, P. L.; CIRILO, E. R. Formulações Semi-Discretas para a Equação 1D de Burgers. Tendências em Matemática Aplicada e Computacional. v. 14, n. 3, p. 319-331, 2013. DOI: http://dx.doi.org/10.5540/tema.2013.014.03.0319.

PEREIRA, A J.; LISBOA, N. da H.; DIAS FILHO, J. H. Análise da estabilidade do método explícito para discretização de equações diferenciais parabólicas por meio de diferenças finitas. C.Q.D.: Revista Eletrônica Paulista de Matemática, Bauru, v. 11, p. 1-10, 2017. DOI: http://dx.doi.org/10.21167/cqdvol11ic201723169664ajpnhljhdf0110.

SAITA, T. M.; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; CANDEZANO, M. A. C.; ACUNA, R. A. B.; MORENO, L. C. G. Simulação numérica da dinâmica de coliformes fecais no lago Luruaco, Colômbia. Tendências em Matemática Aplicada e Computacional. v. 18, n. 3, p. 435-447, 2018. DOI: https://doi.org/10.5540/tema.2017.018.03.435.

WANG, Y. B.; NAKAGAWA, C. J.; YAMAMOTO, M. A numerical method for solving the inverse heat conduction problem without initial value. Inverse Problems in Science and Engineering. v. 18, n. 5, p. 655-671, 2010. DOI: https://doi.org/10.1080/17415971003698615.

Downloads

Publicado

2021-04-20

Como Citar

ROMEIRO, N. M. L. R.; BELINELLI, E. O.; MAGAGNIN, J.; NATTI, P. L.; CIRILO, E. R. Estudo numérico de diferentes métodos aplicados à equação transiente do calor unidimensional. REMAT: Revista Eletrônica da Matemática, Bento Gonçalves, RS, v. 7, n. 1, p. e3012, 2021. DOI: 10.35819/remat2021v7i1id4767. Disponível em: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4767. Acesso em: 20 abr. 2024.

Edição

Seção

Matemática