
Ubiquitous Music Ecosystems: Faust Programs in Csound

Victor Lazzarini1, Damián Keller2, Marcelo Pimenta3, Joseph Timoney1

1Sound and Music Research Group
National University of Ireland, Maynooth

Co. Kildare Ireland

2Amazon Center for Music Research - NAP
Universidade Federal do Acre - Federal University of Acre

3Computer Science Department
Universidade Federal do Rio Grande do Sul

{victor.lazzarini,joseph.timoney}@nuim.ie,

dkeller@ccrma.Stanford.EDU, mpimenta@inf.ufrgs.br

Abstract. This paper describes the combination of two high-level audio and mu-
sic programming systems, Faust and Csound. The latter is a MUSIC N-derived
language, with a large set of unit generators, and a long history of develop-
ment. The former is a purely functional language designed to describe audio
processing algorithms that can be compiled into a variety of formats. The two
systems are combined in the Faust Csound opcodes, which allow the on-the-fly
programming, compilation and instantiation of Faust DSP programs in a run-
ning Csound environment. Examples are presented and the concept of ubiqui-
tous music ecosystem is discussed.

Resumo. Este artigo descreve a combinaao de dois sistemas de programação
de áudio e música, Faust e Csound. Esta ’e uma linguagem derivada de MU-
SIC N, com um conjunto grande de unidades geradoras, e uma longa história
de desenvolvimento. Aquela é uma linguagem funcional pura desenhada para
descrever algoritmos de processamento de audio, que pode ser compilada em
vários formatos. Os dois sistemas são combinados nos opcodes Faust Csound,
que permitem a programação, compilação, e instanciamento imediato de pro-
gramas em um ambiente Csound. Exemplos são apresentados e o conceito de
um eco-sistema para música ubı́qua é discutido.

1. Introduction
Audio signal processing algorithms can be expressed and implemented in a variety of en-
vironments. These range from the lower-level of microcode and assembler programming,
to high-level matrix-manipulation programs such as MatLab and Octave, and patching
systems such as PD or MaxMSP[Puckette 2002]. In general, the advantage of higher-
level specifications is that the algorithm is presented compactly in encapsulating blocks,
which afford good readability and are easily manipulated. On the other hand, such gains
are normally accompanied by a loss of computational efficiency, especially in the case

of general-purpose systems. In high-level realtime audio programming systems, where
processes can be run efficiently, there is a limit of what can be expressed, if compared to
lower-level environments.

In this scenario, we find that languages that can sit at a middle-level in terms of
complexity are optimally placed to provide efficiency and generality to allow the design
and implementation of audio processes. In this paper, we will describe the combination
of two such systems, Csound and Faust, in the development of support tools for ubiqui-
tous music making[Keller et al. 2011]. The article is organised as follows. First, we will
introduce the two systems and discuss their characteristics. The embedding of Faust in
Csound will then be detailed, with some use examples. Finally, the paper will conclude
with a discussion of a proposal for a new concept for audio programming in a multi-
language environment: the ubiquitous music ecosystem.

2. Csound
Csound[Vercoe 1986] is a heir to the MUSIC N systems derived from Mathews’ MUSIC
IV[Mathews and Miller 1964]. Although it still allows a traditional score + orchestra pro-
gramming approach, it is not limited to it. The system is built around a library[ffitch 2005]
that is accessed through its API, and is manipulated via a variety of frontends, the most
basic of them being the command-line interface (CLI) program csound. The API can
be used directly from a number of languages (C, C++, Java, Clojure, Python, Lua, among
others).

Most of Csound programming is done through its orchestra language. In this, the
majority of the code is structured around blocks called instruments, where it is based on
the simple forms of

[out,...] opcode [in, ...]

or

[out =] opcode([in,...])

where opcode is a given unit generator that will either generate an output, pro-
cess, or just consume an input. In the second form, inputs can be taken directly from
other opcodes, by function composition. In general, inputs can be expressions of any
complexity.

Instruments are defined between the keywords instr and endin. They will
contain code that is executed sequentially in two separate stages: at initialisation time
(only once), and at performance time (continuously in an implicit loop). For instance,

instr 1
i1 = 1000
a1 rand i1

out a1
endin

The first line, i1 = 1000, is executed at init-time only, whereas the second
will be executed at init-time (where the opcode rand is initialised), and at perf-time,
producing audio at its output. The third line, out a1, is executed at perf-time only. The

Ubiquitous Music Ecosystems: Faust Programs in Csound 17

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

Csound compiler automatically assigns code to init- or perf-time depending on the types
of variables used, which are defined by the first letter of their name. For instance, init-time
numeric variables start with i, whereas a types are audio variables and thus imply code
that is run at perf-time.

There is an implicit perf-time loop, which makes the instrument compute audio in
blocks of ksmps samples, so that a-variables are constantly updated with new blocks of
samples. There are other variable types, which follow similar rules. Particularly relevant
to our discussion is the k-type, which holds a single sample at perf-time and is normally
used to carry control signals.

Csound has a full complement of arithmetic operators, mathematical functions
and control-flow structures, in addition to over 1800 unit generators (opcodes). It can be
used to describe any time-domain audio signal processing algorithm. It has also special
frequency-domain types and opcodes, which can be used to design spectral processing in-
struments, although not quite from first principles as in the time-domain case. All aspects
of the Csound processing engine can be configured with system parameters passed to it at
the start of a session.

3. Faust

Faust[Orlarey et al. 2009] is a purely functional language designed to describe audio
streams, with which we can implement any time-domain audio processing algorithm.
Its compiler can produce C, C++, Javascript or LLVM code. The compiled code is an
efficient audio digital signal processing (DSP) program, that can be then used in a variety
of environments (as plugins to various systems, including Csound, or as standalone pro-
grams). Signal processing programs created in Faust will generally be more efficient than
their equivalent code written in other high-level music programming languages (Csound
included).

The Faust program describes a process. For instance, the following minimal pro-
gram implements a mixer of two input signals:

process = + ;

Each Faust statement is terminated by a semicolon (;). So here we have an arith-
metic operator (+), which by definition takes two inputs and produces one output. Sum-
ming two signals is the same as mixing them. Similarly, if we want to scale a signal by 2,
we can have

process = *(2);

which is a program of one input and one output, because the multiplication by 2 is
a function of one input to one output. Faust programs can also use the sequential (:) and
parallel (,) operators:

process = _ ,2 : *;

This takes some audio input (_), in parallel with the constant 2, and sends them in
sequence (:) to the function ‘*’. The other important primitives are split (<:) and merge
(:>). Here’s how to square a signal

Ubiquitous Music Ecosystems: Faust Programs in Csound 18

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

process = _ <: *;

and another version of the mix-two program above:

process = _,_:> _;

Faust includes a number of generic User Interface (UI) functions that can be used
to create controls. These get compiled to various forms, depending on the target of the
compilation. For instance, a horizontal slider is defined by the following line

freq = hslider(‘‘frequency’’, 440, 100, 1000, 1);

where the parameters are, respectively: name label, default value, minimum, max-
imum, and minimum step. Faust also allows access to C library functions for trigonomet-
ric operations, etc. With these and time-counting function time, we can for instance,
write a sine wave oscillator as

process = time : *(2*PI/SR) : *(440) : sin;

where PI and SR are constants set to π and the sampling rate.

4. The Faust Csound unit generators

Faust programs can be compiled into C code for Csound opcodes, and built with standard
C compiler tools as dynamic library plugins, for loading into the system. This is the
standard way to employ Faust to implement signal processing algorithms.

With Faust version 2, however, the compiler system has been redesigned into a
library, libfaust. This allows the embedding of the compiler into other programs and
environments. In addition to C code, Faust can produce LLVM[Lattner and Adve 2004]
bitcode via a just-in-time compiler. This allows the complete compilation and running of
a Faust program to happen on-the-fly, under a host.

The Faust Csound unit generators have been built to take advantage of these new
capabilities. They can take an arbitrary Faust program, compile it and then create running
instances of it within a Csound instrument. So it is possible to implement a completely
new process, from first principles and run it as efficiently as compiled C code.

The design of these opcodes mirrors the facilities offered by the libfaust LLVM
support, where the following steps are present:

1. Compilation: we take in a text string containing Faust code, compile it and create
an LLVM factory. This contains the binary representation of a Faust program.

2. Instantiation: an LLVM factory is instantiated in memory and initialised as a
DSP instance. Any controls provided by the Faust program UI are made available
for Csound access.

3. Performance: the Faust DSP instances are run, and their inputs and outputs are
made available to Csound.

Four opcodes have been implemented to allow this functionality:

ifac faustcompile Scode, Sargs

Ubiquitous Music Ecosystems: Faust Programs in Csound 19

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

This opcode implements step 1 above, taking in strings holding the Faust pro-
gram (Scode), and compiler options (Sargs). It produces a handle to the compiled LLVM
factory. It works completely on init-time.

idsp,asig[,...] faustaudio ifac[,ain, ...]

This opcode has a double function of instantiation (at init-time), and performance
(at perf-time). It takes in any inputs defined in the Faust program and produces as many
outputs as necessary. It also produces a handle to the DSP instance, which is used to
access controls defined in the program.

faustctl idsp, Sname, kval

The faustctl opcode is used to access a control named Sname in the DSP instance
idsp, setting it to kval.

idsp,asig[,...] faustgen Scode[,ain, ...]

This code implements the three steps in one single operation. At i-time, it com-
piles and instantiates the program in the string Scode. It then performs the DSP process,
working similarly to faustaudio. It is designed for ‘one-off’ processes, which will not
have more than one DSP instance.

4.1. Examples

Our first example shows the complete sine wave oscillator example discussed in section 3.
The program is placed in an one-off faustgen opcode (the {{ and }} enclose a multi-line
string in Csound) and faustctl is used to set the oscillator frequency:

instr 1

idsp, asig faustgen {{
PI = 3.1415926535897932385;
SR = 44100;
freq = hslider("freq", 440,100,1000,1);
time = (+(1) ˜ _) - 1;
process = time : *(2*PI/SR) : *(freq) : sin;
}}

faustctl idsp,"freq", 440

outs asig
endin

The second example is a bit more involved, showing the classic Karplus-Strong
program in Faust, embedded in a Csound orchestra that can be controlled via MIDI (in a
complete CSD source code). The faustcompile opcode is placed at global level in Csound,
so it is run only once, but its factory can be instantiated by any instruments in the orches-
tra:

Ubiquitous Music Ecosystems: Faust Programs in Csound 20

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

<CsoundSynthesizer>
<CsOptions>
--midi-velocity-amp=4 --midi-key-cps=5
</CsOptions>
<CsInstruments>
ksmps=100
nchnls=2
0dbfs = 1

giPluck faustcompile {{

import("music.lib");
upfront(x) = (x-x’) > 0.0;
decay(n,x) = x - (x>0.0)/n;
release(n) = + ˜ decay(n);
trigger(n) = upfront : release(n) : >(0.0);

size = hslider("excitation", 128, 2, 1024, 1);
dur = hslider("duration", 128, 2, 1024, 1);
att = hslider("attenuation", 0.1, 0, 1, 0.01);

average(x) = (x+x’)/2;
resonator(d, a) = (+ : delay(4096, d-1.5))

˜ (average : *(1.0-a)) ;
process = noise * hslider("level", 0.5, 0, 1, 0.01)
: vgroup("excitator", *(button("play"): trigger(size)))
: vgroup("resonator", resonator(dur, att));

}}, "-vec -lv 1"

instr 1
i3, a1 faustaudio giPluck
faustctl i3,"level", p4*0.5
faustctl i3,"duration", sr/(p5)
faustctl i3,"excitation", sr/(p5)
faustctl i3,"attenuation", 0.01
faustctl i3,"play", 1
kenv linsegr 1,1,1, 0.01, 0

outs a1*kenv,a1*kenv
endin

</CsInstruments>
<CsScore>
</CsScore>
</CsoundSynthesizer>

Ubiquitous Music Ecosystems: Faust Programs in Csound 21

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

Figure 1. Faust embedded in Csound running under Python in an IPython Note-
book.

Ubiquitous Music Ecosystems: Faust Programs in Csound 22

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

5. Music Programming in a Multi-language environment

The embedding of a language such as Faust in Csound, and indeed of others such as
Python and Lua, as well as the embedding of Csound within other systems, places
the question of a multi-language environment for Music Programming at the cen-
tre of the ideas expressed in this paper. We believe that such mix of environments
not only fits in the separation of concerns paradigm that is commonplace in systems
development[Ousterhout 1998][Damasevicius and Stuikys 2002], but also provides a cre-
ative hothouse for ubiquitous music.

An example of this is the use of Csound in the IPython Notebook environment,
through the Csound API in Python (fig.1). In such environment, it is possible to proto-
type and perform new instruments interactively, with optional user interfaces, and through
protocols such as MIDI and Open Sound Control. Adding Faust to this combination al-
lows us to do write programs to do sample-level computation at the C-language level of
performance. Such multi-language, interactive, mix of graphical, controller and text inter-
faces is an example of a generic, flexible and powerful environment for Computer Music.
This functionality is not achieved by any single language system alone. We propose the
concept of ubiquitous music ecosystems for this class of creativity-support environments.

Other examples of such multi-language approaches involving Csound include the
use of external data-processing systems for algorithmic composition (via its score proces-
sor/generator facility); application development for mobile environments such as iOS and
Android (aka MCP[Lazzarini et al. 2012]), where Csound is used as the sound engine,
while system languages (Objective-C, Java) take care of the UI.

6. Conclusions

In this paper we have explored the embedding of Faust programs in the Csound language.
We provided an introduction to the two systems, highlighting the most salient features of
each as an example of a creativity support ecosystem for ubiquitous music tool develop-
ment. The embedding of Faust into host system was briefly explained, and the design of
the Csound unit generators was detailed. Four opcodes were developed to provide sup-
port for the integration of the two environments. Finally, the paper discussed the merits of
multi-language environments for computer music, exploring some scenarios where they
demonstrate advantages over single-language systems.

References

Damasevicius, R. and Stuikys, V. (2002). Separation of concerns in multi-language spec-
ifications. Informatica, 13(3):255–274.

ffitch, J. (2005). The Design of Csound5. In LAC2005, pages 37–41, Karlsruhe, Germany.
Zentrum für Kunst und Medientechnologie.

Keller, D., Flores, L. V., Pimenta, M. S., Capasso, A., and Tinajero, P. (2011). Convergent
trends toward ubiquitous music. Journal of New Music Research, 40(3):265–276.

Lattner, C. and Adve, V. (2004). LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California.

Ubiquitous Music Ecosystems: Faust Programs in Csound 23

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

Lazzarini, V., Yi, S., Timoney, J., Keller, D., and Pimenta, M. (2012). The Mobile Csound
Platform. In Proc. Int. Computer Music Conf. 2012, Ljubliuana. Computer Music
Association.

Mathews, M. and Miller, J. E. (1964). MUSIC IV Programmer’s Manual. Bell Telephone
Labs.

Orlarey, Y., Letz, S., and Fober, D. (2009). Automatic Parallelization of FAUST code. In
LAC2009, Parma, Italy. Casa della Musica.

Ousterhout, J. (1998). Scripting: higher-level programming for the 21st century. IEEE
Computer, 31(3):23–30.

Puckette, M. (2002). Max at seventeen. Computer Music Journal, 26(4):31–43.

Vercoe, B. (1986). The Csound Reference Manual. MIT.

Ubiquitous Music Ecosystems: Faust Programs in Csound 24

ScientiaTec: ISSN 2318-9584. v.2, n.2, Special Issue on Ubiquitous Music. IFRS-Campus Porto Alegre. p. 16-24. 2015.

