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Abstract: Cancer is a disease characterized by the uncontrolled growth of abnormal cells in the body. It is

a complex and multifaceted disease that has challenged researchers and doctors for decades. The ability to

visualize and understand tumor growth can provide valuable insights into how cancer develops and spreads,

leading to significant improvements in cancer diagnosis, treatment, and prevention. The three-dimensional

tumor growth simulation tool that is being developed is an important step in this direction. It allows for detailed

visualization of tumor growth in different parts of the human body, which can provide valuable insights into how

cancer develops and spreads. Additionally, the ability of this tool to simulate tumor growth in different parts of
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da Matemática, Bento Gonçalves, RS, v. 10, n. special, p. e4011, July 19, 2024.
https://doi.org/10.35819/remat2024v10iespecialid7102.

https://orcid.org/0009-0002-4911-6875
https://orcid.org/0000-0002-3093-6948
https://orcid.org/0000-0002-0901-106X
http://lattes.cnpq.br/8725620123788586
krtucho98@gmail.com
reinaldo@matcom.uh.cu
reinaldorr@id.uff.br
pantersrb@id.uff.br
https://doi.org/10.35819/remat2024v10iespecialid7102


REMAT: Revista Eletrônica da Matemática 2

the body means that it can be used to study a wide range of cancer types. This tool utilizes a cellular automaton

and a small-world network to create connections between cells, allowing for a more accurate representation

of organ and tumor structures. Furthermore, it allows for the loading of configurations and parameters from

external files, providing great flexibility to the tool and allowing for customization of the simulation to the specific

needs of each case. For 3D rendering, the Marching Cubes technique is used, which enables detailed and

accurate three-dimensional representation of tumors.

Keywords: scientific computing; numerical methods and applications; cellular automaton; marching cubes;

cancer.

Resumo: O câncer é uma doença caracterizada pelo crescimento descontrolado de células anormais no

corpo. É uma doença complexa e multifacetada que desafiou pesquisadores e médicos por décadas. A ca-

pacidade de visualizar e entender o crescimento tumoral pode fornecer insights valiosos sobre como o câncer

se desenvolve e se espalha, levando a melhorias significativas no diagnóstico, tratamento e prevenção do

câncer. A ferramenta de simulação de crescimento tumoral tridimensional que está sendo desenvolvida é um

passo importante nessa direção. Ela permite uma visualização detalhada do crescimento tumoral em diferen-

tes partes do corpo humano, o que pode fornecer insights valiosos sobre como o câncer se desenvolve e se

espalha. Além disso, a capacidade desta ferramenta de simular o crescimento tumoral em diferentes partes

do corpo significa que ela pode ser usada para estudar uma ampla gama de tipos de câncer. Esta ferramenta

utiliza um autômato celular e uma rede de pequeno mundo para criar conexões entre células, permitindo uma

representação mais precisa das estruturas de órgãos e tumores. Além disso, permite o carregamento de

configurações e parâmetros de arquivos externos, proporcionando grande flexibilidade à ferramenta e per-

mitindo a personalização da simulação de acordo com as necessidades especı́ficas de cada caso. Para a

renderização 3D, a técnica Marching Cubes é usada, que permite uma representação tridimensional deta-

lhada e precisa dos tumores.

Palavras-chave: computação cientı́fica; métodos numéricos e aplicações; autômato celular; marching cubes;

câncer.

Resumen: El cáncer es una enfermedad caracterizada por el crecimiento descontrolado de células anorma-

les en el cuerpo. Es una enfermedad compleja y multifacética que ha desafiado a investigadores y médicos

durante décadas. La capacidad de visualizar y entender el crecimiento tumoral puede proporcionar informa-

ciones valiosas sobre cómo se desarrolla y se propaga el cáncer, lo que lleva a mejoras significativas en el

diagnóstico, tratamiento y prevención del cáncer. La herramienta de simulación del crecimiento tumoral tri-

dimensional que se está desarrollando es un paso importante en esta dirección. Permite una visualización

detallada del crecimiento tumoral en diferentes partes del cuerpo humano, lo que puede proporcionar conoci-

mientos valiosos sobre cómo crece y se multiplica la enfermedad. Además, la capacidad de esta herramienta
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para simular el crecimiento tumoral en distintas partes del cuerpo significa que puede ser utilizada para estu-

diar una amplia gama de tipos de cáncer. Esta herramienta utiliza un autómata celular y una red de pequeño

mundo para crear conexiones entre las células, lo que permite una representación más precisa de las estruc-

turas de órganos y tumores. Además, permite cargar configuraciones y parámetros desde archivos externos,

lo que proporciona una gran flexibilidad a la herramienta y permite la personalización de la simulación según

las necesidades especı́ficas de cada caso. Para la renderización 3D, se utiliza la técnica Marching Cubes, que

permite una representación tridimensional detallada y precisa de los tumores.

Palabras clave: computación cientı́fica; métodos numéricos y aplicaciones; autómata celular; marching cu-

bes; cáncer.
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1 Introduction

The challenge of representing biological phenomena mathematically, physically, and compu-

tationally requires interdisciplinary synergy among experts in these fields. This collaboration enriches

the traditional experimental method used in biological sciences by implementing mathematical mo-

dels, which serve as tools to formulate and test hypotheses, guide experimental research, and refine

the model based on the obtained results (Barredo, 2019).

Cancer is a disease that affects a large number of living organisms and is characterized by

the presence of a group of abnormal cells that grow uncontrollably, disregarding the normal rules

of cell division. It particularly affects humans, where its occurrence and development pose a threat

to life. The malignancy of cancer varies and depends on factors such as the growth rate of cancer

cells, their ability to spread to other tissues, and the possibility of recurrence after surgical removal

(Barredo, 2019).

The purpose of this type of research is to achieve a deeper understanding of biological pro-

cesses through an iterative cycle of theory and experimentation. Additionally, mathematical models

can be used to assist in the conception and design of therapeutic strategies, providing a more precise

and personalized insight into the treatment of each patient (Barredo, 2019).

In the case of this project, a cellular automaton and a small-world network are used to model

the interactions between cells, providing a more accurate representation of tumor growth. The para-

meters and configurations can be loaded from external files, offering great flexibility in adapting the
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simulation to the specific needs of each case. The project aims to simulate tumor growth in small

organs and involves loading and utilizing parameters for the simulation. The graph of cells with their

connections is visualized and analyzed, along with the visualization of the tumor size throughout the

simulation.

The technique of Marching Cubes (Lorensen; Cline, 1987) is used for 3D rendering, providing

a detailed and precise visualization of tumors. This visualization can provide valuable insight into how

cancer develops and spreads, which can be essential for the development of effective therapies and

treatments. By visualizing tumor growth in three dimensions, doctors and scientists can gain a better

understanding of tumor evolution and how it may affect surrounding tissues. This information can be

crucial for the development of effective therapies and treatments for cancer.

2 Theoretical Framework: Definition of the model

In this section, the cellular automaton model presented in this work is conceived. It begins by

formally defining a cellular automaton (Barredo, 2019).

2.1 Cellular Automaton

A cellular automaton is a tuple (L;N ; E ;R) composed of the following representative elements

(Deutsch; Maini; Dormann, 2007):

L: It is a potentially infinite set of cells.

N : L × L → {0, 1} is a neighborhood function, which can be seen as a relation, usually reflexive

and symmetric, between cells. This function shows which pairs of cells are neighbors, that is,

the geometry of the cellular organization.

E : It is a set of states. Each cell in the set L is assigned an associated state at each time step.

R: E |N (v)| → E is a locally defined transition function. This function is the core of the dynamics

of a cellular automaton and is commonly expressed through rules that define the state of the

cell in the next time step based on the state of the neighboring cells. The set containing the

state of the neighboring cells is obtained through the function N (v), which is defined below.

In this work, the notation used by Deutsch, Maini and Dormann (2007) is employed.
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da Matemática, Bento Gonçalves, RS, v. 10, n. special, p. e4011, July 19, 2024.
https://doi.org/10.35819/remat2024v10iespecialid7102.

https://doi.org/10.35819/remat2024v10iespecialid7102


REMAT: Revista Eletrônica da Matemática 5

2.2 Model Hypothesis

Cancer is an extremely complex disease composed of a large number of processes, cellular

interactions, and factors. As part of the modeling process, it is necessary to achieve a simplification

of the problem to make it tractable, based on reducing reality to a set of hypotheses.

To test the efficiency of our tool, we will use a cellular automaton model, which is based on

certain general hypotheses that will be presented next. This model focuses on a type of cancer

known as carcinoma or epithelial cell carcinoma5.

I. Idealized progression of tumor development: It is assumed that tumor development follows

an idealized progression divided into the avascular and vascular stages, where the macros-

copic behavior of the tumor is defined by the mutations expressed by cancerous cells.

II. Mutations of cancer cells: It is assumed that the accumulation of mutations in the cancer cell

is defined as a sequential process and follows an established order, i.e., during the avascular

stage, mutations related to the cell cycle and tumor growth are expressed, and during the

vascular stage, mutations related to angiogenesis and metastasis are expressed, in addition

to the previous ones.

III. Biological entities of the model: The biological entities present in the model consist only of

the types of cells defined in the set of states of the cellular automaton, which consists of three

cell populations: normal cells, cancerous cells, and immune cells.

IV. Interactions between model entities: The interactions between the different cells of the

model consist solely of the rules defined in the transition function of the automaton. There are

types of cell actions that are considered regarding cell movement: cell proliferation and two

types of interactions in the system of the model, between the normal cells and the cancerous

cells, and between the cancerous cells and immune cells.

V. Invariance of normal cells: It is assumed that the population of normal cells in the body is

static and invariant over time, that is, they do not undergo cell division or death processes.

5Carcinomas are the most common type of cancer. They consist of epithelial cells, which are the cells that cover the
internal and external parts of the body. We focus on invasive ductal carcinoma, which is the most common type of breast
cancer. The reasons behind this choice include the abundance of information and data available about this type of cancer.
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VI. Homogeneity of cancer cells: It is assumed that the population of cancer cells that forms

a tumor mass is homogeneous, that is, there are no subtypes with different mutations or that

are at different stages of the cell cycle.

VII. Sufficiency of nutrients: It is assumed that the supply of nutrients and oxygen is constant

and sufficient so that all the tumors represented in the cellular automaton develop properly.

VIII. Tumor development in relation to the population: It is assumed that the advancement

of a tumor through its different development stages depends uniquely on its cell population,

described by Verhulst’s logistic growth equation.

IX. Simple growth process: Tumor development is represented by a simple growth process, that

is, a position occupied by one of these cancerous cells remains occupied in the remaining

time instances, except that the cancerous mass to which they belong is removed from the

simulation as occurs with metastases.

X. Cell adhesion: It is assumed that the adhesion of cancerous cells is maintained at all times

except for detachments of migratory cells as part of the metastatic cascade.

XI. Metastasis paths: Only hematic and lymphatic dispersion is considered as the pathways of

metastasis.

XII. Tissue representation: It is assumed that a tissue can be represented by a small world

network, generated from the Watts-Strogatz model (Watts; Strogatz, 1998) where the coordi-

nates of the vertices have two components x, y ∈ N that constitute the location of the cell in

the corresponding plane with a cut of said tissue.

XIII. Support or stroma tissues: All the support tissues of an organ are simply represented as

stroma because only two fundamental interactions between healthy tissues and cancer are

considered: invasion and migration. Therefore, it is not necessary to distinguish between the

different layers of support.

XIV. Neovascularization interpretation: It is assumed that the neovascularization that grows

inside a tumor due to angiogenesis produces an increase in the capacity load of the environ-

ment and in the rate of proliferation of the tumor itself.

XV. Competitive tumor situations: In situations of competition among several tumors to expand

into the same position, it is assumed that the value of the transition probability corresponds
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to the tumor with the highest likelihood of expansion at that moment. If the tumor eventually

expands towards that position successfully, the new cancerous cell belongs to that tumor.

XVI. Nutrient concentration vectors: It is assumed that the concentration of nutrients increases

as we approach the support tissues and the organism’s vasculature. This fact is represented

by one or more vectors in the organs of the set of cells of the automaton that indicates the

directions in which the nutrient concentration increases.

XVII. Directional bias of tumor growth: It is assumed that the probability of increasing the cell

population of a tumor is affected by the concentration of nutrients. This fact constitutes a bias

in the direction of tumor growth, which translates into a tendency to expand towards higher

concentration.

XVIII. Tumor expansion speed: It is assumed that the speed of tumor expansion depends on the

distance between the cancer cells and the healthy cell trying to displace it, which decreases

as the distance increases.

XIX. Cancer migration: In this model, only the migration of individual cells is represented and no

distinction is made between their different modes. In addition, it is considered that during their

displacement these cells do not divide.

XX. Directional bias of migration: The displacement of migrant cells across the ECM6 of the

stroma is conditioned by the nutrient concentration vectors, which are determinants in the se-

lection of the direction of their movement. The process of ECM degradation is not represented

in this model.

XXI. Distant connections of the graph: Each represented organ is linked to the others through

the distant connections existing in the underlying graph. It is assumed that a cell that pene-

trates the circulatory system at a given point will leave it in a predetermined position, corres-

ponding to the destinies of the mentioned connections.

XXII. Viable destinations of metastasis: Only the migrations of cancerous cells towards locations

that are uncolonized or correspond to a micrometastasis are represented. If the target loca-

tions correspond to a tumor, the migrating cell leaves its position and enters the circulatory

system but its transport and arrival at the new location are not evaluated.

6Extracellular Matrix: A large network of proteins and other molecules that surround, support, and give structure to cells
and tissues in the body.
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XXIII. Competitive situations between micrometastases: In situations of competition among va-

rious micrometastases to expand into the same position, it is assumed that the value of the

transition probability corresponds to the micrometastasis with the highest likelihood of expan-

sion at that moment.

XXIV. Immune cells: Each represented organ is linked to the others through the distant connections

existing in the underlying graph. It is assumed that a cell that penetrates the circulatory system

at a given point will leave it in a predetermined position, corresponding to the destinies of the

mentioned connections.

2.3 Neighborhood Function

The sets An(G) and Ad(G) group the edges of the graph that correspond to immediate and

distant connections, respectively. These sets have the following properties:

An(G) ∪Ad(G) = A(G), (1a)

An(G) ∩Ad(G) = ∅. (1b)

These properties indicate that the subsets of edges An(G) and Ad(G) form a partition of the

set of edges A(G).

Based on the sets of vertices V (G) and edges A(G), the representative elements L and N of

the cellular automaton model are defined as follows.

The set of cells L is defined based on the set of vertices of the graph V (G):

L = V (G). (2)

The neighborhood function N is defined based on the set of edges of the graph A(G) as

shown below:

N : V (G)× V (G) → {0, 1}, (3a)

N (v, w) =

 0 if {v, w} /∈ A(G)

1 if {v, w} ∈ A(G)
, (3b)

In other words, the vertices v ∈ V (G) and w ∈ V (G) are neighbors in the cellular automaton

if there exists an edge in G that connects them.
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The neighborhood of the vertex v ∈ V (G) is defined based on the neighborhood function

N (v, w) as the set of vertices N (v) that have edges with the vertex v:

N (v) = {w | N (v, w) = 1}. (4)

2.4 Set of Cells: Watts-Strogatz Model

In the presented study, a soft tissue is defined as a set of cells that exhibit two types of

connections: between nearby neighboring cells and between distant cells. To represent these types

of connections, a cellular automaton model based on a graph network is used. In their work, Watts

and Strogatz (1998), showed that there are many biological, technological, and social networks that

lie between regular and random networks, which have traditionally been used to model different types

of dynamic systems.

Let v be a vertex of the graph that has kv edges connecting it to kv vertices. The value

between the actual number of edges Kv that exist between these kv vertices and the maximum

number of possible edges7 kv(kv − 1)/2 is the clustering coefficient of vertex v and is determined as

(Barredo, 2019):

Cv =
2Kv

kv(kv − 1)
. (5)

The global clustering coefficient of the graph CG is the average of all individual clustering

coefficients Cv, that is (Barredo, 2019):

CG =
1

|V (G)|

|V (G)|∑
v=1

Cv. (6)

The average path length is the mean of the distances between every pair of vertices belonging

to the graph and is denoted as ℓG. Due to the existence of numerous distant connections through the

circulatory system, the average path length in the network of cells is relatively small.

Therefore, it is hypothesized that a living tissue possesses a high clustering coefficient and

a small average path length. These characteristics are characteristic of small-world networks, and

they are used to represent living tissue. To generate small-world networks with these characteristics,

the Watts and Strogatz model is used (Watts; Strogatz, 1998). This model starts with a graph with

7The maximum number of possible edges is reached when the neighbors, denoted as kv of vertex v belong to a clique.
In an undirected graph, a clique is a set of vertices such that every pair of vertices is connected by an edge.
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q vertices, each connected to k immediate neighbors, and then randomly rewires each edge of the

graph with a probability p, introducing edges that connect distant vertices.

2.5 Marching Cubes

The Marching Cubes technique is a computer graphics algorithm used to extract a polygonal

mesh of an isosurface from a three-dimensional discrete scalar field, such computed tomography

(CT) scans and magnetic resonance imaging (MRI) data (Lorensen; Cline, 1987). In the context

of this project, it is used for the three-dimensional representation of tumors, providing detailed and

accurate visualization.

This algorithm works by processing the cells of volume data (also known as voxels), checking

the intersection between their respective edges and the isosurface. The values of each vertex of

the cells are compared with a given isosurface value, and these vertices are classified as “inside” or

“outside” the isosurface (Figure 1). Once the type of intersection is determined, an approximation of

the isosurface contained in the cell is constructed by building triangles (Cirne; Pedrini, 2013).

Figura 1: Illustration of the 15 basic cases of the Marching Cubes method. The green vertices are

those that are classified as “inside” of the isosurfaces, while the rest is classified as “outside” of them.

Source: Cirne and Pedrini (2013).

Due to the high computational cost of representing and applying the Marching Cubes algo-

rithm to realistic models containing millions of cells, this work implements a model scaling technique

that reduces the length of the dimensions of the original cellular automaton model. The reduction

process is as follows:
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• Cells are grouped into quadrants of dimensions provided by the user.

• The states of all cells belonging to the quadrant are examined.

• The quadrant adopts the state that is most repeated among the cells in it.

• After performing this process for several quadrants, each quadrant reduces its size from (n×

m× l) to (1× 1× 1), where n ≤ Sx,m ≤ Sy, l ≤ Sz.

In Barredo (2019), the scaling process for 2 dimensions and its influence on tumor expansion

velocity are expanded upon, causing a modification in the number of days that an iteration represents.

For better understanding, a visual representation is included here (Figure 2).

Figura 2: Representation of different scales of the cellular automaton and the time spans needed

for a tumor to expand satisfactorily through the space shown. Cell v represents a cancer cell that

tries to expand to the remaining cells. The shaded areas show the minimum time needed for the

tumor to occupy these cells according to the scale used. Red corresponds to 24 hours, blue to 48

hours, and black to 72 hours. (a) The dimensions of a cell of the automaton are equivalent to those

of a cancerous cell 3.5 × 10−2mm. (b) The dimensions of a cell of the automaton are twice those

of a cancerous cell 7.0 × 10−2mm so each cell contains 4 cells. (c) The dimensions of a cell of the

automaton are three times those of a cancerous cell 1.05× 10−1mm so each cell contains 9 cells.

(a) a (b) b (c) c
Source: Barredo (2019, p. 89).

3 Methodology

In this section, we will present the concepts and details necessary to understand the simula-

tion carried out using our cellular automaton model.
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3.1 State Set

Next, taking into account hypothesis XIII about support tissues, the states for the normal cells

of the automaton are arranged as follows:

• s(v, n) = 0: The vertex v has the state corresponding to empty space or lumen at time n, and

represents the hollow cavities of the organs and ducts.

• s(v, n) = 1: The vertex v represents an epithelial cell at time n, and corresponds to the tissue

where the carcinoma originates.

• s(v, n) = 2: The vertex v has the state corresponding to stroma at time n, and represents the

set of support tissues of the organ.

Regarding the cancerous cells, three fundamental states are distinguished based on the mo-

del hypotheses:

• s(v, n) = 3: The vertex v represents a tumor cell at time n, and constitute the neoplastic mass.

• s(v, n) = 4: The vertex v represents a migrating cell at time n, that is, they have the necessary

mutations to perform the metastatic cascade.

• s(v, n) = 5: The vertex v represents a micrometastatic cell at time n, that is, they performed

the metastatic cascade successfully and are colonizing the new location, but can be destroyed

by the immune system or fail in this colonization.

Finally, the states of the immune cells:

• s(v, n) = 6: The vertex v represents an immune cell at time n.

• s(v, n) = 7: The vertex v represents a cell in an intermediate state at time n.

Then the state set has the form:

E = {0, 1, 2, 3, 4, 5, 6, 7}. (7)

Initially, each cell is assigned the corresponding state based on its position in the tissue of

each location represented in the automaton, starting from the corresponding assignment of the diffe-

rent states. To a few primary organ epithelial cells, the corresponding state of cancerous tumor cells
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REMAT: Revista Eletrônica da Matemática 13

forming the initial neoplastic focus is assigned. The transitions between the states of the cells are

subject to the rules of the transition function.

3.2 Transition Function

Definition 3.1. A global configuration of the automaton S(n) (Deutsch; Maini; Dormann, 2007) is a

vector that contains the state values of all the cells in the set V (G) at time n:

S(n) =
(
s(v1, n), s(v2, n), . . . , s(v|V (G)|, n)

)
, (8a)

S(n) =
(
s(vi, n)vi∈V (G)

)
. (8b)

The space containing all possible global configurations of the automaton is denoted by the letter S

and is defined as S = E |V (G)|. Then a global configuration takes one of the possible values of the

space S, that is S(n) ∈ S.

Definition 3.2. A local configuration of the automaton S(v, n) (Deutsch; Maini; Dormann, 2007) is a

vector that contains the state values of an ordered subset of cells from the set V (G) at time n.

S(v, n) =
(
s(v, n), s(w1, n), . . . , s(w|N (v)|, n)

)
. (9)

In this work, the ordered subset of cells is formed by a focal vertex v and its neighborhood

N (v), that is:

S(v, n) =
(
s(v, n), s(wi, n)wi∈N (v)

)
. (10)

However, it is necessary to be able to distinguish in a local configuration the vertices belonging

to the immediate neighborhood from those belonging to the distant neighborhood, as well as the

vertices of each of the organs of the network. The implementation of the automaton must take these

considerations into account.

Definition 3.3. The function R(S(v, n)) (Deutsch; Maini; Dormann, 2007) that receives a local confi-

guration S(v, n) centered on a focal vertex v at time n and returns the state of the vertex v at the next

instant of time n+ 1 is called the local transition function.

R : E |N | → E , (11a)

R(S(v, n)) =



e1 with probability ρ(S(v, n) → e1)

e2 with probability ρ(S(v, n) → e2)
... . . .

e|E| with probability ρ(S(v, n) → e|E|)

, (11b)
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where ei ∈ E , ∀i ∈ {1, 2, . . . , |E|}, S(v, n) ∈ E |N | and ρ(S(v, n) → ei) is a transition probability that

expresses the possibility of reaching the elementary state ei from the local configuration S(v, n). This

transition probability satisfies the following conditions:

ρ : E |N | × E → [0, 1], (12a)

|E|∑
i=1

ρ(S(v, n) → ei) = 1. (12b)

In a stochastic cellular automaton, the local transition function follows a probability distribution

that determines the probability of changing the current state of a cell according to the configuration

of its neighborhood. Thus, the state of a cell v at time n+ 1 is determined from its state at time n, by

applying the corresponding local transition function,

s(v, n+ 1) = R(S(v, n)). (13)

The dynamics of the system are defined by a global transition function Rg(S(n)) (Deutsch;

Maini; Dormann, 2007) that receives a global configuration of the automaton S(n) at time n and is

based on the application of the local transition function R(S(v, n)) to all the cells of the automaton to

obtain the global configuration at the next instant of time n+ 1,

Rg : S → S, (14a)

Rg(S(n)) = R(S(v, n)) ∀v ∈ V (G). (14b)

Then the evolution of the automaton towards a global configuration at time n+1 is determined

from the global configuration at time n, by applying the global transition function,

S(n+ 1) = Rg(S(n)). (15)

As shown in hypothesis VIII on tumor development in relation to the population, the model

assumes that the dynamics of a tumor follow Verhulst’s logistic growth function (Verhulst, 1838),

presented below:


dP

dt
= rP (1− P

K
)

P (t = 0) = P0

, (16)
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where it is expressed that the variation of the population with respect to time depends on a growth

rate r, the population P at that instant of time and a value K that represents the carrying capacity,

that is, the amount of individuals of the population that the environment can support. Angiogenesis

can be translated as an increase in the loading capacity K of the environment, as well as an increase

in the rate of cell proliferation due to the fact that neovascularization constitutes a more efficient

supply method than nutrient diffusion. Therefore, the global growth dynamics will be described by

two expressions: one corresponding to the avascular stage and one corresponding to the vascular

stage, both with their particular parameters.

3.3 Tumor Growth Rules

One of the most important rules in defining the model is the rule that intervenes in the behavior

of the cancerous cells that make up a tumorous mass. The rule of the appearance of tumor cells,

taking into account the new alternative transition probability, is written as:

s(v, n+ 1) = R(S(v, n)) =


ζ0(τ(v, n,Ntum)) if s(v, n) = 0 ∧ N n

3 (S(v, n)) > 0

ζ1(τ(v, n,Ntum)) if s(v, n) = 1 ∧ N n
3 (S(v, n)) > 0

ζ2(τ(v, n,Ntum)) if s(v, n) = 2 ∧ N n
3 (S(v, n)) > 0

, (17)

where the probability distribution of the random variables ζi(τ(v, n,Ntum)) ∈ {i, 3} with i ∈ {0, 1, 2}

would remain as:

P (ζi(τ(v, n,Ntum) = i) = 1− ρ(τ(v, n,Ntum) → 3), (18a)

P (ζi(τ(v, n,Ntum) = 3) = ρ(τ(v, n,Ntum) → 3). (18b)

The calculation of the transition probability ρ(τ(v, n,Ntum) → 3) is defined from Verhulst’s

logistic growth equation. First, the growth equation should be written in such a way that we can

express the variation of the population from an instant of time n to the instant n+ 1. For small values

of ∆t, the derivative of the growth equation can be approximated as:

dP (t)

dt
≈ P (t+∆t)− P (t)

∆t
, (19a)

P ′(t) ≈ P (t+∆t)− P (t)

∆t
, (19b)

∆tP ′(t) ≈ P (t+∆t)− P (t), (19c)

P (t+∆t)− P (t) ≈ ∆tP ′(t), (19d)
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then if we take the time t as a discrete variable, and we make t = n∆t, we get:

P (n∆+∆t)− P (n∆t) ≈ ∆tP ′(n∆t), (20a)

P ((n+ 1)∆t)− P (n∆t) ≈ ∆tP ′(n∆t). (20b)

The expression (20b) is interpreted as the variation of the tumor population between the time

instants n and n+1 as can be seen in the left part P ((n+1)∆t)−P (n∆t). The time that passes in the

continuous model between the time instants n and n+1 of the cellular automaton is ∆t. From (20b) it

is inferred that the transition probability ρ(τ(v, n,Ntum) → 3) is calculated via P ′(t). Starting from (16),

under the initial condition, it get:

P (t) =
P0K

P0 + (K − P0)e−rt
, (21)

whose derivative P ′(t) finally takes the form:

P ′(t) =
P0Krert(K − P0)

(P0ert +K − P0)2
. (22)

We previously exposed that the transition probability ρ(τ(v, n,Ntum) → 3) ∈ [0, 1], which does

not occur with the function P ′(t), so it is necessary to analyze its image. With this aim, we derive the

function P ′(t) to seek the stationary points, obtaining:

P ′′(t) =
P0Kr2ert(P0 −K)(P0e

rt + P0 −K)

(P0ert +K − P0)3
, (23)

where it is inferred that P ′(t) possesses a maximum when:

t =
1

r
ln

K − P0

P0
, (24)

evaluating P ′(t) at this value of t we obtain the maximum growth probability:

P ′
(
t =

1

r
ln

K − P0

P0

)
=

Kr

4
. (25)

Therefore P ′(t) reaches its maximum value at the point (1r ln
K−P0
P0

, Kr
4 ), where this value

depends directly on the loading capacity K and the growth rate r, returning the probability interval

[0, Kr
4 ]. Suppose that ρmax is the maximum value of the function P ′(t) in its domain, such that P ′(t) ∈

[0, ρmax] subject to the condition ρmax ≤ 1. Solving the following inequality:

Kr

4
≤ ρmax, (26)

we obtain the necessary condition for the function P ′(t) ∈ [0, ρmax], resulting in:

r ≤ 4ρmax

K
. (27)
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By means of condition (27), it can be ensured that the tumoral growth probability obtained

by evaluating P ′(t) belongs to the interval [0, ρmax], allowing an adjustment mechanism of the model

through the appropriate selection of ρmax. This adjustment mechanism is based on the fact that

the models of cellular automata collected in previous works are divided into two general classes:

those that reproduce a model specifically designed for the reproduction of tumor growth as Interian

et al. (2017), and those that reproduce a general growth model and adapt it to the specific case of

tumor growth as Kansal and Torquato (2000b), Jiao and Torquato (2011), and Hu and Ruan (2003),

category to which this work belongs. In the second type of works it is common to find this mechanism

in the form of a base probability as seen in Kansal and Torquato (2000b). The condition (27) is

expressed in terms of r since the value of ρmax is selected a priori and K is determined directly from

the available information about the growth process of a tumor, while the process of estimating r lacks

a methodology so it is essential to have as much information as possible about its value.

From hypotheses VIII and XIV on tumor development in relation to the population and the

interpretation of neovascularization respectively, it is inferred that the growth of the tumor population

is described by two expressions corresponding to the avascular and vascular stages, each with its

own growth rates r and loading capacities K. It can be deduced that both stages also have their

own initial population values P0, where the initial population of the vascular stage P v
0 corresponds to

the loading capacity of the environment during the avascular stage Ka, that is, Ka = P v
0 . Similarly,

maximum probability values ρmax can be defined for each of these stages. Finally, the transition

probabilities, with t = n∆t, would remain as:

ρa(n∆t) =
P a
0Karae

ran∆t(Ka − P a
0 )

(P a
0 e

ran∆t +Ka − P a
0 )

2
, (28a)

ρv(n∆t) =
P v
0Kvrve

rvn∆t(Kv − P v
0 )

(P v
0 e

rvn∆t +Kv − P v
0 )

2
. (28b)

Thus, using the expressions (28a, 28b) and differentiating the stages of tumor development

based on a new parameter na that indicates the duration of the avascular stage, we write the transition

probability ρ(τ(v, n,Ntum) → 3) as:

ρ(τ(v, n,Ntum) → 3) =

 ρa(τ(v, n,Ntum)∆t) if τ(v, n,Ntum) ≤ na

ρv((τ(v, n,Ntum)− na)∆t) if τ(v, n,Ntum) > na

. (29)

Note in the expression for the calculation of ρv that the time used as a parameter is relative

to the start of the vascular stage, that is, τ(v, n,Ntum) − na. The expression (29) is known as the
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general transition probability of tumoral growth and is used as a basis for the definition of the specific

probabilities for the displacement of each type of normal cell in the automaton.

3.4 Configuration and Parameters of the Simulation

Some of the parameters and configurations that can be modified are:

• Sx, Sy, Sz- Dimension of the space declared on the x, y and z-axis respectively (Barredo,

2019).

The ranges of values for the spatial components of the graph vertices are as follows: 0 ≤ x ≤

Sx, 0 ≤ y ≤ Sy and 0 ≤ z ≤ Sz.

• p - Probability of reconnection in the Watts-Strogatz model.

• P a
0 , P v

0 - Initial populations of the avascular and vascular stages respectively (Barredo, 2019).

• Parameters corresponding to the number of states that the automaton cells can have and their

descriptions.

• Parameters for possible transitions between the states of the automaton.

• Parameters for the probabilities of the transitions between states.

When including parameters for the calculation of certain probabilities, one can take into ac-

count the calculation of the probability of interaction between tumor cells and the immune

system (Hu; Ruan, 2003).

• Parameters corresponding to the shape of the organs where the simulation will take place.

• Parameters to describe the schema of the organs where the simulation will be performed.

This allows for the consideration of the characteristics of each organ separately and enables

a more realistic simulation.

3.5 Computational Tools Used

To develop this work, the following tools were used. For the generation of the simulation, C#

in its .net7.0 version. For the visual part to visualize the cells and their connections in certain regions,

Python in its 3.11 version with Streamlit and other dependencies. For the visual part to render the
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tumor, Unity in its 2021.3.28f1 version. The computer’s specifications are: A mid-range computer

with an Intel Core I3 8th generation processor and 12gb of RAM.

4 Results and Discussion

The experiments and results obtained from these are essential for the validation of the com-

putational model being developed. In this section, the obtained results are presented.

Figura 3: Visualizations of the cellular automaton simulation during the avascular stage. The area

shown has dimension [0, 10.5]mm× [0, 10.5]mm× [0, 10.5]mm.

(a) Generation 4 (b) Generation 30

(c) Generation 45 (d) Generation 70
Source: Elaboration of the authors (2024).

Figura 4: Visualizations of the cellular automaton simulation during the vascular stage. The tumor of

larger area is the primary one and the one of smaller area is the secondary one that is carrying out

the metastasis. The area shown has dimension [0, 52.5]mm× [0, 52.5]mm× [0, 52.5]mm.

(a) Generation 150
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(b) Generation 175 (c) Generation 200
Source: Elaboration of the authors (2024).

The results of using our tool to simulate a process involving millions of human body cells can

be observed in (Figure 3) and (Figure 4). In our case, tests were conducted with 2 million cells of the

cellular automaton, which would represent approximately 9 million human body cells. The efficiency

of the Marching Cubes algorithm is appreciated, as with the use of few vertices, we can represent

millions of cells of our automaton. This gives us better performance for running much more complex

models.

4.1 Tumor Growth Validation

To perform the validations, comparisons and analyses of the radius and populations in the

simulation of the growth of an invasive ductal carcinoma were taken into account. It can be observed

from the results of (Figure 5) that a curve similar to the one described in Deutsch, Maini and Dormann

(2007) is obtained, which is present in other models in the literature that use other growth equations

such as Gompertz (Kansal; Torquato, 2000b; Dormann; Deutsch, 2002; Kansal; Torquato, 2000a;

Jiao; Torquato, 2011). It is worth noting that the model returns biologically realistic values. After

performing several analyses, it was found that at least 46% of the times the radius usually matches

approximately with the results presented in the literature, obtaining values of the radius of 0.5mm for

the avascular stage and, starting from this value, obtaining a radius of 10mm for the vascular stage.
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Figura 5: Population of a rapidly growing invasive ductal carcinoma with ρamax = 1 during the avascular

stage. Y = Poblacion Tumoral Vascular, this means Tumoral Vascular Population and X = Generaci-

ones del Automata, this means Generations of the Cellular Automaton. ρamax = 1 means Maximum

Avascular Probability.

Source: Elaboration of the authors (2024).

5 Final Considerations

The growth of a tumor can be visualized in 3D using the Marching Cubes technique. It is

widely used for medical visualizations, such as computed tomography (CT) and magnetic resonance

imaging (MRI) images. Additionally, the Marching Cubes algorithm can reduce the computational

time used for sampling in 3D reconstruction. However, one of the main issues with Marching Cubes

is the presence of unused voxels that can be generated during the analysis of the coordinates and

intensity values of 2D images. These unused voxels can affect the smoothness of the 3D surface

(Visutsak, 2020).

The creation of a tool to simulate tumor growth using cellular automaton in any organ of the

human body is a significant advancement in the field of modeling and simulation of biological systems.
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This tool provides an innovative and flexible approach to studying tumor growth, which has important

implications in both basic research and clinical applications.

The ability to load specific configurations and adjust, add, or remove parameters that influ-

ence the realism of the simulation allows for the adaptation of the model to different scenarios and

conditions. This makes the tool highly versatile and applicable to a wide range of situations and types

of tumors.
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RAMÍREZ-TORRES, Ariel; RIBEIRO, Celso C.; CONCI, Aura. Tumor growth modelling by cellular
automata. Mathematics and Mechanics of Complex Systems, [s. l.], v. 5, n. 3-4, p. 239-259,
2017. DOI: https://doi.org/10.2140/memocs.2017.5.239.

JIAO, Yang; TORQUATO, Salvatore. Emergent Behaviors from a Cellular Automaton Model for
Invasive Tumor Growth in Heterogeneous Microenvironments. PLOS Computacional Biology,
San Francisco, v. 7, n. 12, p. 1-14, 2011. DOI:
https://doi.org/10.1371/journal.pcbi.1002314.

KANSAL, A. R.; TORQUATO, Salvatore; CHIOCCA, E. A.; DEISBOECK, T. S. Emergence of a
Subpopulation in a Computational Model of Tumor Growth. Journal of Theoretical Biology,[s. l.],
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