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Abstract: Based on Crout’s method, we will present, in this work, new non singularity criteria and sufficient

conditions for existence of the LU factorization, for non strictly diagonally dominant pentadiagonal matrices.

Crout’s method is a recursive process of n stages that obtains the factorization A = LU of a pentadiagonal

matrix of order n. In this recursive process of obtaining both the lower triangular matrix L and the upper trian-

gular matrix U , the parameters αi, 1 ≤ i ≤ n, must be non-zero to ensure that det(A) ̸= 0 and A = LU . Crout’s

recursive method is replaced by the analysis of sufficient conditions that can be verified simultaneously with

low computational cost.
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Resumo: Baseados no mÂetodo de Crout, nÂos apresentaremos neste trabalho novos crit Âerios de não singulari-

dade, e de existência de fatoracËão LU , para matrizes pentadiagonais não estritamente diagonais dominantes.

O mÂetodo de Crout Âe um processo recursivo de n est Âagios que obtÂem a fatoracËão A = LU de uma matriz pen-

tadiagonal de ordem n. Nesse processo recursivo de obtencËão tanto da matriz triangular inferior L, quanto da

matriz triangular superior U , os parâmetros αi, 1 ≤ i ≤ n, devem ser não nulos para garantir que det(A) ̸= 0

e que A = LU . Em nosso trabalho, o mÂetodo recursivo de Crout Âe substituÂıdo pela anÂalise de condicËões

suficientes que podem ser verificadas simultaneamente, com baixo custo computacional.

Palavras-chave: mÂetodo de Crout; matriz pentadiagonal; matrizes não estritamente diagonais dominantes.

Resumen: Basados en el mÂetodo de Crout, presentaremos en este trabajo nuevos criterios de no singula-

ridad y de existencia de factorizaci Âon LU para matrices pentadiagonales no estrictamente dominantes en la
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diagonal. El mÂetodo de Crout es un proceso recursivo de n etapas que obtiene la factorizaci Âon A = LU de

una matriz pentadiagonal de orden n. En este proceso recursivo para obtener tanto la matriz triangular inferior

L como la matriz triangular superior U , los parÂametros αi, 1 ≤ i ≤ n, deben ser no nulos para asegurar que

det(A) ̸= 0 y que A = LU . En nuestro trabajo, el mÂetodo recursivo de Crout es sustituido por el anÂalisis de

condiciones suficientes que pueden ser verificadas simult Âaneamente, con bajo costo computacional.

Palabras clave: mÂetodo de Crout; matriz pentadiagonal; matrices no estrictamente dominantes en la diago-

nal.
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1 Introduction

The development of methods for characterization of inverses of tridiagonal and pentadiagonal

matrices has been studied by many authors, some of them will be commented on the text.

Fischer and Usmani (1969) gave a general analytical formula for inverse of symmetric Toeplitz

tridiagonal matrices. The research objective was to obtain accurate error bounds for some finite

difference approximations to 2-point boundary value problems.

Meurant (1992) presented a good review on research concerning the characterization of in-

verses of symmetric tridiagonal and block tridiagonal matrices as well as results concerning the decay

of the elements of the inverses. According to this author, closed form explicit formulas for elements

of the inverses can only be given for special matrices, e. g., Toeplitz tridiagonal matrices correspon-

ding, for instance, to constant coefficients 1D elliptic partial differential equations (PDE), or for block

matrices arising from separable 2D elliptic PDE (Bank; Rose, 1977).

There are also research focused on the development of algorithms for finding the inverse of

any general non-singular tridiagonal or pentadiagonal matrix. If you want to know more on this matter,

we recommend the articles of El-Mikkawy (2004), and Zhao and Huang (2008). The algorithms

presented in those papers are suited for implementation using computer algebra systems such as

MAPLE, MATHEMATICA, and MATLAB, for example.

The results of those research usually depend on the existence of the LU factorization of a

non-singular matrix A, such that A = LU . Besides, many articles assume that the matrix is invertible

or present non trivial conditions that ensure the non singularity of A and its LU factorization.
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In 2023, we have developed a low-cost test for detecting in a simple way when a diagonally

dominant pentadiagonal matrix is non-singular and has an LU decomposition. Remember that A of

order n is a diagonally dominant matrix if |Aii| ≥ |Ai1|+ |Ai2|+ · · ·+ |Ain|, ∀i, 1 ≤ i ≤ n. In this case,

we say that A is a non strictly diagonally dominant matrix. This result was published in Proceeding

Series of the Brazilian Society of Computational and Applied Mathematics (Almeida; Remigio, 2023).

We cite three works concerning these issues: Almeida and Remigio (Mar. 2023); Johnson,

MarijuÂan and Pisonero (2023), and Kolotilina (2003). In the first paper, the authors have present a

sufficient condition for existence of the LU factorization of a Toeplitz symmetric tridiagonal matrix A.

They used an analysis based on the parameters of Crout’s method, and concluded that det(A) ̸= 0.

In the second paper, the authors have characterized, in terms of combinatorial structure and sign

pattern, when a weakly (non strictly) diagonally dominant matrix may be invertible. In the third paper,

the author has presented necessary and sufficient conditions for non singularity of the non strictly

block diagonally dominant matrices.

Based on the results of Almeida and Remigio (2023), we are going to present in our work

simple sufficient conditions for non singularity, and existence of the LU factorization, of non strictly

diagonally dominant pentadiagonal (or tridiagonal) matrices. These conditions are simple because

they can be verified simultaneously and with low operational cost and do not require the computatio-

nally expensive calculations of recursive processes like the Crout’s method (which will be presented

in next Section 2) and methods based on determinants.

Finally, the paper is organized as follows. In Section 2 some definitions are presented as well

as preliminary results which will be used in later sections. We present the set PD which is a subset of

diagonally dominant pentadiagonal matrices, and we present sufficient conditions for non singularity,

and existence of LU factorization, of diagonally dominant pentadiagonal matrices (Definition 2.1). In

Section 3 we improve the results obtained in Section 2 by presenting two new theorems. In Section

4, it can be seen the results that relate the principal minors of a pentadiagonal diagonally dominant

matrix to its parameters from Crout’s decomposition. We prove the following strong result (Theorem

4.5): ªLet A be a pentadiagonal diagonally dominant matrix; if det(A) ̸= 0, then A = LU , that is, there

is the Crout’s decomposition of matrix A”. In Section 5 we define a reverse-permuted matrix. Based

on this definition we can extend the results obtained in Sections 2 and 3. In Section 6 we present the

conclusions of the work.
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2 Definitions and preliminary results

Following the notation given in Almeida and Remigio (2023), Mn×n(R) represents the set of

all matrices of order n with elements in R. In this work, we consider A = (Aij) ∈ Mn×n(R), with

Aij = 0 whenever |i− j| > 2 (pentadiagonal matrix). This matrix is represented by:

A =























































d1 a1 c1 0 0 0 . . . 0

b2 d2 a2 c2 0 0
...

e3 b3 d3 a3 c3 0

0 e4 b4 d4 a4 c4
. . .

. . .
. . .

. . .
. . .

...

0 en−2 bn−2 dn−2 an−2 cn−2

en−1 bn−1 dn−1 an−1

0 . . . en bn dn























































. (1)

In this case, we consider b1 = e1 = e2 = cn−1 = cn = an = 0. As we are interested in studying

non strictly diagonally dominant pentadiagonal matrices, we also consider |di| ≥ |ei|+ |bi|+ |ai|+ |ci|,

for all i, 1 ≤ i ≤ n. If, |di| > |ei|+|bi|+|ai|+|ci|, for all i, then A is a strictly diagonally dominant matrix.

In numerical analysis, it is well known that every strictly diagonally dominant matrix is non-singular

and has LU decomposition.

Our goal is to find sufficient conditions that guarantee that a diagonally dominant pentadiago-

nal matrix is non-singular and has LU decomposition. To do this, we will consider the set PD which

is composed by pentadiagonal matrices that are diagonally dominant and that satisfy the conditions

shown in the definition below.

Definition 2.1. The set PD is defined as the set of pentadiagonal matrices A (1) such that their

diagonal elements satisfy: di ̸= 0, |di| ≥ |ei| + |bi| + |ai| + |ci|, i ∈ {1, . . . , n}. Besides, the elements

on each row of A must satisfy one of the following conditions: (a) bi = ei = 0; or

(b) |di| > |ei|+ |bi|+ |ai|+ |ci|; or

(c) b2i + e2i ̸= 0, |di| = |ei|+ |bi|+ |ai|+ |ci|, and a2i + c2i ̸= 0; or

(d) bi ̸= 0, ai = ci = 0, |di| = |ei|+ |bi|+ |ai|+ |ci|, and |di−1| > |ei−1|+ |bi−1|+ |ai−1|+ |ci−1|; or
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(e) ei ̸= 0, ai = ci = 0, |di| = |ei|+ |bi|+ |ai|+ |ci|, and |di−2| > |ei−2|+ |bi−2|+ |ai−2|+ |ci−2|; or

(f) ei = 0, bi ̸= 0, bi−1 = 0, ai−1 ̸= 0, ci−1 = 0 and sgn(bi.di) = −sgn(ai−1.di−1).

Remark: Every strictly diagonally dominant pentadiagonal matrix belongs to the set PD, according

to the item (b) from Definition 2.1.

Let A be a pentadiagonal matrix as shown in (1). According Zhao and Huang (2008), if

A = LU , then L and U are pentadiagonal matrices given by

L =































α1 0 . . . 0

β2 α2 0
...

e3 β3 α3 0

. . .
. . .

. . .

... 0

0 . . . en βn αn































, U =































1 γ1 ϵ1 0 . . . 0

0 1 γ2 ϵ2 0
...

0 1 γ3 ϵ3
. . .

. . .

... 1 γn−1

0 . . . 0 1































,where (2)

αi =







d1, i = 1; d2 − γ1β2, i = 2;

di − γi−1βi − ϵi−2ei, i ∈ {3, 4, . . . , n};
(3)

γi =











a1/α1, i = 1;

ai − ϵi−1βi
αi

, i ∈ {2, 3, . . . , n− 1};
(4)

ϵi =

{

ci
αi

, i ∈ {1, 2, . . . , n− 2}; (5)

βi =







b2, i = 2;

bi − γi−2ei, i ∈ {3, 4, . . . , n}.
(6)

The previous method is known as Crout’s decomposition. This decomposition is possible

whenever αi ̸= 0, 1 ≤ i ≤ n and, in this case, det(A) ̸= 0.

Remark: Based on Crout’s decomposition, the Theorem 3.1 from Almeida and Remigio (2023),

states that if A ∈ PD, then A = LU , and det(A) ̸= 0.
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As is to be expected, there are pentadiagonal diagonally dominant matrices that do not satisfy

the sufficient conditions presented in Definition 2.1. For these matrices, the non singularity criteria

based on Crout’s method fail. We next present an example of this type.

Example 1. The following matrix A /∈ PD.

A =























1 1 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1























.

Note that the row 2 does not satisfy the conditions presented in Definition 2.1. Therefore, our test on

non singularity is inconclusive, since the sufficient conditions have not been met. Although, we know

det(A) = 0 because the matrix has two equal rows.

Remark: In previous example, if the second row was 1 −1 0 0 0, then the matrix would belong to

PD, because b1 = e1 = 0; e2 = 0, b1 = 0 and sgn(b2.d2) = −sgn(a1.d1); |d3| > |e3|+|b3|+|a3|+|c3| = 0;

|d4| > |e4|+|b4|+|a4|+|c4| = 0 and |d5| > |e5|+|b5|+|a5|+|c5| = 0. Therefore, in this case, det(A) ̸= 0

and A would have an LU decomposition.

It is well known that if A is a squared matrix of order n which has an LU decomposition, where

Lii ̸= 0 and Uii = 1, 1 ≤ i ≤ n, then AT also has an LU decomposition, where Lii ̸= 0 and Uii = 1,

1 ≤ i ≤ n.

Remark: Considering the previous result, the subjects of our studies are pentadiagonal matrices A,

such that A, or AT belongs to the set PD.

We next present an example concerning the previous remark.

Example 2. The following matrix A is not diagonally dominant (observe the first and third

rows of A).
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A =























2 3 1 0 0

1 5 0 0 0

1 1 3 1 1

0 −1 1 2 0

0 0 1 1 2























and AT =























2 1 1 0 0

3 5 1 −1 0

1 0 3 1 1

0 0 1 2 1

0 0 1 0 2























.

However, its transpose AT is diagonally dominant. Besides, note that rows 1 to 5 from the transpose

matrix satisfy the conditions presented in Definition 2.1: row 1 ± item (a); rows 2, 3 and 4 ± item (c);

row 5 ± item (b). Thus, by Theorem 3.1 from Almeida and Remigio (2023), AT belongs to set PD.

Therefore, A has an LU decomposition, and det(A) = det(AT ) ̸= 0.

We finish this section by stating a lemma that will be used in the next section. This lemma

was proved by Almeida and Remigio (2023, Lemma 2.3).

Lemma 2.2. Let a, b, c, d, and e be real numbers that satisfy: |d| ≥ |a| + |b| + |c| + |e|, and d ̸= 0.

Suppose the real numbers β, γ, ϵ, γ̃, ϵ̃, α are such that: (i) β = b− γ̃e, (ii) |γ|+ |ϵ| ≤ 1, (iii) |γ̃|+ |ϵ̃| ≤ 1,

and (iv) α = d−γβ−ϵ̃e ̸= 0. Then (I)
|a− ϵβ|+ |c|

|α|
≤ 1; (II) |d| > |a|+|b|+|c|+|e| −→

|a− ϵβ|+ |c|

|α|
< 1;

(III) e2 + b2 ̸= 0, |γ| + |ϵ| < 1, |γ̃| + |ϵ̃| < 1 −→
|a− ϵβ|+ |c|

|α|
< 1; (IV) e ̸= 0, |γ̃| + |ϵ̃| < 1 −→

|a− ϵβ|+ |c|

|α|
< 1.

3 Two new non singularity criteria for non strictly diagonally dominant

pentadiagonal matrices

The next two theorems provide further conditions for a pentadiagonal diagonally dominant

matrix A to have Crout’s decomposition, and det(A) ̸= 0.

Theorem 3.1. Let A be a pentadiagonal diagonally dominant matrix as shown in (1). Consider (3),

(4), (5), (6) and suppose there is an integer k > 1 such that αi ̸= 0, 1 ≤ i ≤ k − 1, |dk−1| >

|ek−1|+ |bk−1|+ |ak−1|+ |ck−1|, and bk+2j ̸= 0 and ek+(2j+1) ̸= 0, whenever j ≥ 0 and k+(2j+1) ≤ n.

Observe that bk+2j = bn ̸= 0 and k + (2j + 1) = n+ 1, if n− k is an even number and j = (n− k)/2.

On the other hand, if n− k is odd and j = (n− k − 1)/2, then ek+(2j+1) = en ̸= 0 and k + 2j = n− 1.

Thus, αi ̸= 0, 1 ≤ i ≤ n. Therefore, A = LU and det(A) ̸= 0.

Proof. Note that αi ̸= 0, ∀i, 1 ≤ i ≤ k − 1 −→ |γi| + |ϵi| ≤ 1, ∀i, 1 ≤ i ≤ k − 1, because |di| ≥

|ei|+ |bi|+ |ai|+ |ci|. The demonstration is based on mathematical induction and Lemma 2.2 (item I).
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REMAT: Revista Eletrônica da MatemÂatica 8

Considering Lemma 2.2, item (II), |γk−1| + |ϵk−1| < 1. If k = 2, then |α2| = |d2 − β2γ1| =

|d2 − γ1b2| ≥ |d2| − |γ1||b2| > |d2| − |b2| ≥ |a2|+ |c2|, because b2 ̸= 0. Thus, |γ2|+ |ϵ2| ≤ 1, according

to Lemma 2.2, item (I). If k > 2, then, according to Lemma 2.2 and the theorem’s hypotheses,

we obtain that |γk−1||γk−2| ≤ |γk−2|. Hence, |γk−1||γk−2| + |ϵk−2| ≤ |γk−2| + |ϵk−2 ≤ 1. Thus,

|αk| = |dk−βkγk−1−ϵk−2ek| ≥ |dk|−|γk−1||βk|−|ϵk−2||ek| ≥ |dk|−|γk−1|(|bk|+|γk−2||ek|)−|ϵk−2||ek| >

|dk| − |bk| − |ek| ≥ |ak|+ |ck| ≥ 0, because bk ̸= 0. Therefore, |αk| > 0 and, according to Lemma 2.2,

item (I), |γk|+ |ϵk| = |
ak−ϵk−1βk

αk
|+ | ck

αk
| ≤ 1.

Now, note that ek+1 ̸= 0 and |γk||γk−1| ≤ |γk−1|. Hence, |γk||γk−1|+ |ϵk−1| ≤ |γk−1|+ |ϵk−1 < 1.

Thus, |αk+1| = |dk+1 − βk+1γk − ϵk−1ek+1| ≥ |dk+1| − |γk||βk+1| − |ϵk−1||ek+1| ≥ |dk+1| − |γk||bk+1| −

(|γk||γk−1|+ |ϵk−1|)|ek+1| > |dk+1| − |bk+1| − |ek+1| = |am+1|+ |cm+1| ≥ 0. In this way, |αk+1| > 0 and,

according to Lemma 2.2, item (IV), |γk+1|+ |ϵk+1| = |
ak+1−ϵkβk+1

αk+1
|+ |

ck+1

αk+1
| < 1.

In order to prove by induction, suppose that |γk+2j |+ |ϵk+2j | ≤ 1, |γk+(2j+1)|+ |ϵk+(2j+1)| < 1,

αk+2j ̸= 0, and αk+(2j+1) ̸= 0, ∀j, 0 ≤ j ≤ m.

If M = k + 2(m+ 1), then |γM−1||γM−2| ≤ |γM−2|. Hence, |γM−1||γM−2|+ |ϵM−2| ≤ |γM−2|+

|ϵM−2 ≤ 1. By using induction hypothesis, if bM ̸= 0, then

|αM | = |dM − βMγM−1 − ϵM−2eM | ≥ |dM | − |γM−1||βM | − |ϵM−2||eM | ≥

|dM | − |γM−1|(|bM |+ |γM−2||eM |)− |ϵM−2||eM | > |dM | − |bM | − |eM | ≥ |aM |+ |cM ≥ 0.

Therefore, |αM | > 0 and, according to Lemma 2.2, item (I), |γM | + |ϵM | = |
aM−ϵM−1βM

αM
| + | cM

αM
| ≤ 1.

Moreover, |γM ||γM−1| ≤ |γM−1| and, by the induction hypothesis, |γM ||γM−1| + |ϵM−1| ≤ |γM−1| +

|ϵM−1| < 1.

If eM+1 ̸= 0, then

|αM+1| = |dM+1 − βM+1γM − ϵM−1eM+1| ≥

|dM+1| − |γM ||βM+1| − |ϵM−1||eM+1| ≥

|dM+1| − |γM |(|bM+1|+ |γM−1||eM+1|)− |ϵM−1||eM+1| ≥

|dM+1| − |γM ||bM+1| − (|γM ||γM−1|+ |ϵM−1|)|eM+1| >

|dM+1| − |bM+1| − |eM+1| ≥ |aM+1|+ |cM+1 ≥ 0.
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In this way, |αM+1| > 0 and, according to Lemma 2.2, item (IV), |γM+1|+ |ϵM+1| = |
aM+1−ϵMβM+1

αM+1
|+

|
cM+1

αM+1
| < 1.

Therefore, by mathematical induction, it is possible to conclude that αi ̸= 0, 1 ≤ i ≤ n. □

Theorem 3.2. Let A be a pentadiagonal diagonally dominant matrix as shown in (1). Consider (3),

(4), (5), (6) and suppose there is an integer k > 2 such that αi ̸= 0, 1 ≤ i ≤ k − 1, |dk−2| >

|ek−2| + |bk−2| + |ak−2| + |ck−2|, |dk−1| > |ek−1| + |bk−1| + |ak−1| + |ck−1| and b2k+j + e2k+j ̸= 0,

whenever j ≥ 0 and k + j ≤ n. Thus, αi ̸= 0, 1 ≤ i ≤ n. Therefore, A = LU and det(A) ̸= 0.

Proof. The demonstration follows the same steps of Theorem 3.1. □

We next present two examples of applications of Theorem 3.1 and Theorem 3.2.

Example 3 (Theorem 3.1). Matrix A given below has Crout’s decomposition and det(A) ̸= 0.

A =























1 1 0 0 0

−1 3 1 1/2 0

0 1 −1 0 0

0 1 0 1 0

0 0 −1 −1 2























.

The first row elements of matrix A satisfy the item (a), and the second row elements satisfy the item

(b) described in Definition 2.1. Therefore, we can apply Theorem 3.1 with k = 3 to obtain the desired

result. It would not be possible to obtain the result just using the conditions described in Definition

2.1, without applying the theorem. Note that the third row elements of matrix A satisfy the item (d),

and the forth row elements of matrix A satisfy the item (e) described in Definition 2.1. However, the

fifth row of A does not satisfy none of the six items described in that definition.

Example 4 (Theorem 3.2). Matrix A given below has Crout’s decomposition and det(A) ̸= 0.

A =























2 1 0 0 0

−1 3 1 1/2 0

0 1 −1 0 0

0 1 0 1 0

0 0 −1 0 1























.
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The first and the second row elements of matrix A satisfy the item (b) described in Definition 2.1.

Therefore, we can apply Theorem 3.2 with k = 3 to obtain the desired result.

4 Relation between principal minors and parameters of the Crout’s decomposition

A well known result of numerical analysis says that any matrix A, of order n, has LU decom-

position if all principal minors of order k are non-zero, 1 ≤ k ≤ n − 1. A principal minor of order k is

the determinant of the submatrix formed by the first k rows and first k columns of matrix A. In this

section we are going to prove the following strong result (Theorem 4.5) ªLet A be a pentadiagonal

diagonally dominant matrix as shown in (1). If det(A) ̸= 0, then A = LU , that is, there is the Crout’s

decomposition of matrix A”.

In order to reach the objective proposed previously, we will present two theorems regarding

the relationship between principal minors from a pentadiagonal diagonally dominant matrix and the

parameters of the Crout’s decomposition given in (3), (4), (5) and (6). The results from these theo-

rems are also valid for tridiagonal matrices just considering ei = ci = 0, 1 ≤ i ≤ n, in (1).

Firstly, we are going to present the following particular cases. The principal minor of order 1

from a pentadiagonal diagonally dominant matrix is given by M1 = d1 = α1, and the one of order

2 is given by M2 = d1 d2 − a1 b2. If α1 ̸= 0, then M1/α1 = 1 and M2/α1 = d2 − γ1b2 = α2. The

Laplace Expansion by the third row results in M3 = d3M2 − b3(a2d1 − c1b2) + e3(a2a1 − c1d2). In

this way, if αi ̸= 0, 1 ≤ i ≤ 2, then M1/α1 = 1, M2/(α1α2) = 1, and M3/(α1α2) = d3 − b3[(a2 −

ϵ1b2)/α2] + e3[(γ1a2 − ϵ1d2)/α2]. Besides, by (4), we obtain a2 = γ2α2 + ϵ1b2. Hence, M3/(α1α2) =

d3 − b3γ2 + e3(γ1γ2)− e3[ϵ1(d2 − γ1b2)/α2]. Therefore,

M3/(α1α2) = d3 − γ2(b3 − γ1e3)− ϵ1e3 = d3 − γ2β3 − ϵ1e3 = α3.

The following notation Mi,j will be used to indicate the matrix of order i − 1 resulting from

the removal of row i and column j from the matrix corresponding to the principal minor Mi. In this

way, given the matrices Mi,i−1 and Mi,i−2, consider Laplace Expansion by the last column of these

matrices to calculate their determinants.

To obtain the determinant of Mi,i−1, it will be necessary to calculate two other determinants

from matrices of order i − 2. These matrices will be represented by B(i−2) and B(i−1). The matrix
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B(i−2) is resulting from the removal of column i − 1 and row i − 1 from the matrix corresponding to

principal minor Mi−1. Thus, det(B(i−2)) = Mi−2. To obtain the matrix B(i−1), the last row of B(i−2)

should be replaced by the last row of the matrix corresponding to principal minor Mi−1, without the

element from column i− 1.

To obtain the determinant of Mi,i−2, it will be necessary to calculate two other determinants

from matrices of order i−2. These matrices will be represented by E(i−2) e E(i−1). The matrix E(i−2)

is resulting from the removal of column i− 2 and row i− 1 from the matrix corresponding to principal

minor Mi−1. To obtain the matrix E(i−1), the last row of E(i−2) should be replaced by the last row of

the matrix corresponding to principal minor Mi−1, without the element from column i− 2.

In the next Example 5, we consider a particular case of those matrices mentioned above.

Example 5: Respecting previous notation and considering i = 4, we obtain that,

M4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 a1 c1 0

b2 d2 a2 c2

e3 b3 d3 a3

0 e4 b4 d4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= d4M3 − b4 det(M4,3) + e4 det(M4,2).

Therefore,

M4 = d4

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 a1 c1

b2 d2 a2

e3 b3 d3

∣

∣

∣

∣

∣

∣

∣

∣

∣

− b4

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 a1 0

b2 d2 c2

e3 b3 a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ e4

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 c1 0

b2 a2 c2

e3 d3 a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that:

det(M4,3) = a3 det(B(2))− c2 det(B(3)) = a3

∣

∣

∣

∣

∣

∣

d1 a1

b2 d2

∣

∣

∣

∣

∣

∣

− c2

∣

∣

∣

∣

∣

∣

d1 a1

e3 b3

∣

∣

∣

∣

∣

∣

,

det(M4,2) = a3 det(E(2))− c2 det(B(3)) = a3

∣

∣

∣

∣

∣

∣

d1 c1

b2 a2

∣

∣

∣

∣

∣

∣

− c2

∣

∣

∣

∣

∣

∣

d1 c1

e3 d3

∣

∣

∣

∣

∣

∣

.
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As seen previously, if αi ̸= 0, 1 ≤ i ≤ 3, then α1 = d1 = M1, M1/α1 = 1, γ1 = a1/d1,

ϵ1 = c1/α1, α2 = d2 − γ1β2 = d2 − γ1b2, det(B(2))/(α1α2) = M2/(α1α2) = 1, γ2 = (a2 − ϵ1β2)/α2,

β3 = b3 − γ1e3, α3 = d3 − γ2β3 − ϵ1e3, and M3/(α1α2α3) = 1. Additionally,

c2/α2 = ϵ2, det(B(3))/α1 = β3, det(E(2))/(α1α2) = γ2, and

det(E(3))/α1 = d3 − ϵ1e3 = α3 + γ2β3.

Therefore,

M4

α1α2α3
= d4 − b4

a3 − ϵ2β3
α3

+ e4
a3γ2 − ϵ2(α3 + γ2β3)

α3
−→

M4

α1α2α3
= d4 − b4γ3 + γ2γ3e4 − ϵ2e4 = d4 − γ3β4 − ϵ2e4 = α4,

where β4 = b4 − γ2e4. □

The next theorem will be presented respecting previous notations.

Theorem 4.1. Let A be a pentadiagonal diagonally dominant matrix as shown in (1). Consider (3),

(4), (5), (6) and suppose there is an integer k, 1 < k ≤ n, such that αi ̸= 0, ∀i, 1 ≤ i ≤ k − 1. Then

Mi

α1α2···αi
= 1, ∀i, 1 ≤ i ≤ k − 1, and Mk

α1α2···αk−1
= αk. If k = 1 and α0 = 1, then M1

α0
= M1 = d1 = α1.

Proof. According to the beginning of this Section 4, the result is satisfied for k varying from 1 to 4.

Besides, for k = 4,
det(B(k−1))
α1···αk−3

= βk−1,
det(E(k−2))
α1···αk−2

= γk−2 and
det(E(k−1))
α1···αk−3

= αk−1 + γk−2βk−1.

In order to prove the result by induction, suppose that the previous equalities are valid for

all positive integer k, 4 ≤ k ≤ m, where m ≤ n. Besides, Mi

α1α2···αi
= 1, ∀i, 1 ≤ i ≤ k − 1, and

Mk

α1α2···αk−1
= αk, for all k such that 4 ≤ k ≤ m and αi ̸= 0, 1 ≤ i ≤ k − 1.

Applying Laplace Expansion by the last row to calculate the principal minor Mm+1, we obtain

that Mm+1 = dm+1Mm−bm+1 det(Mm+1,m)+em+1 det(Mm+1,m−1). Now, using Laplace Expansion

by the last column to calculate det(Mm+1,m) and det(Mm+1,m−1), we obtain Mm+1 = dm+1Mm −

bm+1[amMm−1 − cm−1 det(B(m))] + ei[am det(E(m−1))− cm−1 det(E(m))].

Suppose that αi ̸= 0, ∀i, 1 ≤ i ≤ m. According to the hypothesis of induction, Mi

α1α2···αi
=

1, 1 ≤ i ≤ m. Besides,

Mm+1

α1α2 · · ·αm

= dm+1 − bm+1
am − ϵm−1βm

αm

+ em+1
amγm−1 − ϵm−1(αm + γm−1βm)

αm

−→

Mm+1

α1α2 · · ·αm

= dm+1 − bm+1γm + γm−1γmem+1 − ϵm−1em+1 = dm+1 − γmβm+1 − ϵm−1em+1 =

αm+1.
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Therefore, the result is valid for every integer k, 1 ≤ k ≤ n. □

Remark: For a tridiagonal matrix, the following result is valid: Mi = diMi−1 − bi ai−1Mi−2.

The next two lemmas will be useful in the proof of Theorem 4.4.

Lemma 4.2. Let A be a pentadiagonal diagonally dominant matrix, as shown in (1), and Mk its

principal minor of order k, 1 ≤ k < n. Consider the matrix corresponding to the principal minor Mk

and its parameters of the Crout’s decomposition. These parameters will be represented by the same

notation used in (3), (4), (5), (6), but adding an overline to them. In this way, whenever αi ̸= 0, ∀i, 0 ≤

i ≤ k − 1, we will obtain βi = βi, αi = αi, ∀i, 1 ≤ i ≤ k; γi = γi, ϵi = ϵi, ∀i, 1 ≤ i ≤ k − 2;

γk−1 = γk−1, ϵk−1 = 0; γk = 0, ϵk = 0.

Proof. If k = 1, then β1 = 0 = β1 (by convention, we are considering e1 = b1 = 0), α1 = d1 = α1.

Note that γ1 = 0 = ϵ1, because the elements ak and ck are not present in the matrix associated to

the principal minor Mk and, for this case, conveniently, it is assumed that ak = ck = 0.

If k = 2, then β1 = 0 = β1, α1 = d1 = α1, γ1 = a1/d1 = γ1 and ϵ1 = 0. Besides, β2 = b2 = β2,

α2 = d2 − γ1 b2 = α2, γ2 = 0, and ϵ2 = 0.

If k = 3, then β1 = 0 = β1, α1 = d1 = α1, γ1 = a1/d1 = γ1 and ϵ1 = c1/d1 = ϵ1.

Besides, β2 = b2 = β2, α2 = d2 − γ1 b2 = α2, γ2 = a2−ϵ1β2
α2

= γ2 and ϵ2 = 0. Additionally,

β3 = b3 − γ1 e3 = b3 − γ1 e3 = β3, α3 = d3 − γ2 β3 − ϵ1 e3 = d3 − γ2 β3 − ϵ1 e3 = α3, γ3 = ϵ3 = 0.

Consider k > 3 and suppose the conditions imposed in this theorem are valid for every i,

1 ≤ i < m ≤ k−2. Then βm = bm−γm−2 em = bm−γm−2 em = βm, αm = dm−γm−1 βm−ϵm−2 em =

dm − γm−1 βm − ϵm−2 em = αm, γm = am−ϵm−1βm

αm
= am−ϵm−1 βm

αm
= γm and ϵm = cm

αm
= ϵm.

Therefore, by mathematical induction, the conditions are valid for every i, 1 ≤ i ≤ k − 2.

Additionally, note that βk−1 = bk−1−γk−3 ek−1 = bk−1−γk−3 ek−1 = βk−1, αk−1 = dk−1−γk−2 βk−1−

ϵk−3 = dk−1−γk−2 βk−1−ϵk−3 = αk−1, γk−1 =
ak−1−ϵk−2βk−1

αk−1
=

ak−1−ϵk−2 βk−1

αk−1
= γk−1 and ϵk−1 = 0.

Besides, βk = bk−γk−2 ek = bk−γk−2 ek = βk, αk = dk−γk−1 βk−ϵk−2 ek = dk−γk−1 βk−ϵk−2 ek =

αk, and γk = ϵk = 0. In this way, the lemma is proved. □

Lemma 4.3. Let A be a pentadiagonal diagonally dominant matrix, as shown in (1), and consider the

parameters of the Crout’s decomposition (3), (4), (5), (6). If αi ̸= 0, ∀i, 1 ≤ i ≤ j + 1 ≤ n, then, at the

end of j-th stage of the Gaussian Elimination Method applied to matrix A, we will obtain the following

elements: (Diagonal) d
(j)
i = αi, i ∈ {1, · · · , j + 1}, d

(j)
j+2 = dj+2 − ϵj ej+2, d

(j)
i = di, ∀i, j + 3 ≤ i ≤ n;
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(First Upper Diagonal) a
(j)
i = γi αi, i ∈ {1, · · · , j + 1}, a

(j)
i = ai, ∀i, j + 2 ≤ i ≤ n; (Second Upper

Diagonal) c
(j)
i = ci, i ∈ {1, · · · , n}; (First Lower Diagonal) b

(j)
i = 0, i ∈ {1, · · · , j + 1}, b

(j)
j+2 = βj+2,

b
(j)
i = bi, ∀i, j+3 ≤ i ≤ n; (Second Lower Diagonal) e

(j)
i = 0, i ∈ {1, · · · , j+2}, e

(j)
i = ei, ∀i, j+3 ≤

i ≤ n.

Proof. Let A be a pentadiagonal matrix of order n. Then, in each stage j of the Gaussian Elimination

Method, we need to carry out elementary row operations to obtain null elements below the diagonal

at the column j (elements Aj+1,j and Aj+2,j , when j < n− 1, and element An,n−1, when j = n− 1).

Additionally, in the row j of the pentadiagonal matrix A, the elements belonging to column k > j + 2

are null. Therefore, in step j, j < n−1, the elements of the position (j+1, j) and (j+2, j) will become

null and only elements from positions (j + 1, j + 1) and (j + 1, j + 2), (j + 2, j + 1) and (j + 2, j + 2)

will be altered.

In stage j, the multipliers are given by m
(j)
j+1 = b

(j−1)
j+1 /d

(j−1)
j , and m

(j)
j+2 = e

(j−1)
j+2 /d

(j−1)
j (the

superscript j = 0 represents the element from the original matrix). Therefore, in stage j = 1, m
(1)
2 =

b2/α1, and m
(1)
3 = e3/α1 (remember that α1 = d1). Thus, b

(1)
2 = 0, and e

(1)
3 = 0; d

(1)
2 = d2 − a1m

(1)
2 =

d2 − γ1 b2 = α2, and a
(1)
2 = a2 − c1m

(1)
2 = a2 − ϵ1 b2 = γ2 α2; b

(1)
3 = b3 − a1m

(1)
3 = b3 − γ1 e3 = β3, and

d
(1)
3 = d3 − c1m

(1)
3 = d3 − ϵ1 e3.

Suppose that the matrix obtained at the end of j-th stage of the Gaussian Elimination Method

applied to A contains the elements as presented in this theorem. Also, suppose that αj+2 ̸= 0. Thus,

in stage j + 1, the multipliers are represented by m
(j+1)
j+2 = b

(j)
j+2/d

(j)
j+1 = βj+2/αj+1, and m

(j+1)
j+3 =

e
(j)
j+3/d

(j)
j+1 = ej+3/αj+1. In this way, b

(j+1)
j+2 = 0, and e

(j+1)
j+3 = 0;

d
(j+1)
j+2 = d

(j)
j+2 − a

(j)
j+1m

(j+1)
j+2 = dj+2 − ϵj ej+2 − γj+1 βj+2 = αj+2, and

a
(j+1)
j+2 = a

(j)
j+2 − c

(j)
j+1m

(j+1)
j+2 = aj+2 − ϵj+1 βj+2 = γj+2 αj+2;

b
(j+1)
j+3 = b

(j)
j+3 − a

(j)
j+1m

(j+1)
j+3 = bj+3 − γj+1 e3 = βj+3, and

d
(j+1)
j+3 = dj+3 − cj+1m

(j+1)
j+3 = dj+3 − ϵj+1 ej+3.

Therefore, by mathematical induction, the lemma is demonstrated. □

The next Lemma 4.4 and Theorem 4.5 will guarantee that if a pentadiagonal diagonally domi-

nant matrix has a non null determinant, then Crout’s decomposition is always possible.
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Lemma 4.4. Let A be a pentadiagonal diagonally dominant matrix as shown in (1). Consider (3), (4),

(5), (6) and suppose there is a positive integer k, 1 ≤ k < n, such that αi ̸= 0, ∀i, 0 ≤ i ≤ k − 1, and

αk = 0. Then det(A) = 0.

Proof. Firstly, considering the lemma’s hypotheses, note that αi ̸= 0, ∀i, 1 ≤ i ≤ k−1 −→ |γi|+|ϵi| ≤

1, ∀i, 1 ≤ i ≤ k − 1 (the proof of this result is based on mathematical induction and Lemma 2.2, item

I). Now, observe that if α1 = 0, then d1 = α1 = 0. Since the matrix is diagonally dominant, it follows

that a1 = c1 = 0. Therefore, the first row of matrix A would be null and det(A) = 0.

If k = 2, then M1 = d1 = α1 ̸= 0 and, according to Theorem 4.1, M2
α1

= α2. If α2 = 0,

then M2 = 0, and d1d2 − a1b2 = 0. Note that α2 = d2 − γ1 b2 and |d2| ≥ |b2| + |a2| + |c2|. In

this way, if d2 = 0, then |b2| = |a2| = |c2| = 0. Hence, det(A) = 0. Otherwise, if d2 ̸= 0 and

0 = |α2| = |d2−γ1 b2| ≥ |d2|−|b2|, then |a2| = |c2| = 0 and |d2| = |b2|. In this way, |d1| = |a1| e |c1| = 0,

because d1 = (a1 b2)/d2, and |d1| ≥ |a1|+ |c1|. Hence, the first row of matrix A is represented by the

vector a1 (b2/d2, 1, 0, · · · , 0) and the second row is represented by the vector d2 (b2/d2, 1, 0, · · · , 0).

Thus, det(A) = a1 d2 det(Ã) = 0, because the first two rows of Ã would be the same.

Suppose that αi ̸= 0, ∀i, 1 ≤ i ≤ k − 1 and αk = 0, for k ≥ 3. If dk = 0, then A will have

a null row, consequently, det(A) = 0. Consider dk ̸= 0 and |dk| ≥ |ek| + |bk| + |ak| + |ck|. In this

way, according to Theorem 4.1, Mk = 0 ⇐⇒ αk = 0. Since αk = dk − γk−1βk − ϵk−2ek, and

according to the calculations presented in Theorem 3.1 from Almeida and Remigio (2023), it follows

that 0 = |αk| ≥ |dk| − |bk| − |ek| −→ |dk| ≤ |bk| + |ek|. Thus, ak = ck = 0 and |dk| = |ek| + |bk|.

Respecting these conditions, if ck−1 = 0, then det(A) = 0. Indeed, just observe that the elements

from matrix A satisfy: Ai,j = 0, for j > k and 1 ≤ i ≤ k. Since Mk = 0, the process of row reduction

of the matrix corresponding to the principal minor Mk will result in a matrix whose the k-th row is a

zero row. Therefore, the row-reduced matrix must also contain the same zero row. Similarly, it is

possible to prove that Mj = 0, ∀j, j > k.

Referring to the previous case, if ck−1 ̸= 0, then |dk−1| ≥ |ek−1| + |bk−1| + |ak−1| + |ck−1| >

|ek−1|+ |bk−1|+ |ak−1|. Thus, according to Lemma 4.2 and Lemma 2.2 (item II), |γk−1| = |γk−1| < 1,

and bk = 0. In fact, if bk ̸= 0, then αk ̸= 0, according to the calculations presented in Theorem

3.1. Besides, if ek = 0, then Mk = dk Mk−1 ̸= 0. Hence, ek ̸= 0. In these conditions, to guarantee

Mk = 0, we need to have γk−2 = 0 and |ϵk−2| = 1, because γk−2 ̸= 0 and |γk−1| < 1 −→

|γk−1 γk−2| + |ϵk−2| < |γk−2| + |ϵk−2| ≤ 1. In this way, |αk| > 0, because ek ̸= 0, and |αk| =
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|dk − βkγk−1 − ϵk−2ek| ≥ |dk| − |γk−1||βk| − |ϵk−2||ek| ≥ |dk| − |γk−1|(|bk| + |γk−2||ek|) − |ϵk−2||ek| ≥

|dk| − |bk| − (|γk−1| |γk−2|+ |ϵk−2|)|ek| > |dk| − |bk| − |ek| = 0.

Now, accordingly to the previous paragraph, consider |ϵk−2| = 1 and observe that: (1) if k = 3,

then |c1| = |α1| = |d1| ≥ |a1| + |c1|; hence, a1 = 0. (2) If k = 4, then |c2| = |α2| = |d2 − b2γ1| ≥

|d2|−|b2| ≥ |a2|+|c2|; hence, a2 = 0. (3) If k > 4, then |ck−2| = |αk−2| = |dk−2−βk−2γk−3−ϵk−4ek−2| ≥

|dk−2| − |bk−2| − |ek−2| ≥ |ak−2|+ |ck−2|; hence, ak−2 = 0. The next step of the proof is to use Lemma

4.3.

In Lemma 4.3, the superscript j = 0 means that we are considering the original elements from

matrix A, before applying the Gaussian Elimination Method. In this way, at the end of the j-th stage,

j = k−3, we can conclude that the rows k−2 and k will be represented, respectively, by the following

vectors: (0, · · · , 0, αk−2, γk−2 αk−2, ck−2, 0, 0, 0, · · · , 0), and (0, · · · , 0, ek, bk, dk, ak, ck, 0, · · · , 0), if

k > 3. The number of zeros at the beginning of each one of these vectors is equal to k − 3.

There is no zero at the beginning of the previous vectors, if k = 3. Besides, the number of ze-

ros after ci is equal to n − i − 2; if i = n − 2, then there is no zero after ci. Remembering that

γk−2, bk, ak, ck are all equal to zero, |dk| = |ek|, and |αk−2| = |ck−2|, then the previous vectors are

given by αk−2 (0, · · · , 0, 1, 0, ϵk−2, 0, 0, 0, · · · , 0), and ek (0, · · · , 0, 1, 0,
dk
ek
, 0, 0, 0, · · · , 0). Next, we

are going to prove that dk
ek

= ϵk−2. Therefore, det(A) = 0.

Note that the elementary operation we are using in Gaussian Elimination does not change

neither the determinant of A, nor its principal minors. In this way, we are going to use the notation

M
(k−2)
k to refer to the determinant of the matrix that is resulting from the removal of the row k − 2

and column k from the matrix associated with the end of the j-th stage, j = k − 3, of the Gaussian

Elimination applied to the matrix corresponding to the principal minor Mk. Similarly, the following

notation is used M
(k−1)
k . Besides, by Lemma 4.3, the elements ak−1 and ck−2 are not changed by

the Gaussian Elimination at the end of the stage j = k − 3.

Using Laplace Expansion by the last column of the matrix associated with the end of the

j-th stage, j = k − 3, of the Gaussian Elimination applied to the matrix corresponding to the prin-

cipal minor Mk, we obtain that 0 = Mk = dk Mk−1 − ak−1M
(k−1)
k + ck−2M

(k−2)
k . Now, observe

that M
(k−1)
k = 0, because the rows k − 2 and k − 1 of the matrix associated with this determinant

are represented, respectively, by the vectors αk−2 (0, · · · , 0, 1, 0) and ek (0, · · · , 0, 1, 0) (remember

that bk = 0, in this concerned case). The last two rows corresponding to the determinant M
(k−2)
k

are represented, respectively, by the following vectors: (0, · · · , 0, βk−1, d
(j)
k−1) and (0, · · · , 0, ek, 0) =
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ek
αk−2

(0, · · · , 0, αk−2, 0). Switching these two rows and remembering that γk−2 = 0, we obtain that

M
(k−2)
k = − ek

αk−2
Mk−1. In this way, 0 = Mk = dk Mk−1 − ck−2

ek
αk−2

Mk−1 = (dk − ϵk−2 ek)Mk−1 −→

dk − ϵk−2 ek = 0 −→ dk
ek

= ϵk−2. Therefore, det(A) = 0. □

Theorem 4.5. Let A be a pentadiagonal diagonally dominant matrix as shown in (1). If det(A) ̸= 0,

then the parameters (3) of Crout’s Decomposition are non-zero, αi ̸= 0, ∀i, 1 ≤ i ≤ n. Therefore, A

has an LU decomposition and A = LU .

Proof. Suppose there is j, 1 ≤ j ≤ n, such that αj = 0. If j = 1, then 0 = α1 = d1. Thus, det(A) = 0,

by Lemma 4.4. If j > 1, then it would exist a positive integer k (well-ordering principle) such that

αi ̸= 0, ∀i, 0 ≤ i ≤ k − 1, and αk = 0. Thus, det(A) = 0 (by Lemma 4.4). Therefore, if there was j,

1 ≤ j ≤ n, such that αj = 0, then det(A) = 0, and we would obtain a contradiction. □

5 Reverse-permuted matrix

In this section, we will present another technique for detecting in a simple way when a diago-

nally dominant pentadiagonal matrix A is non-singular and has an LU decomposition. This technique

takes in consideration the next Definition 5.1 on reverse-permuted matrix of a matrix A (denoted by

A).

Firstly, we define a reverse-permuted matrix as follows.

Definition 5.1. The reverse-permutated matrix of an order n matrix A will be denoted by A. This

matrix is obtained from A in two steps. First, we need to carry out a sequence of row permutations

in matrix A. Next, we need to carry out a sequence of column permutations in this last permuted

matrix. These two steps are described as follows: (1ë) each row i from A must be permuted with the

row n− i+1; (2ë) each column j from the permuted matrix obtained in the first step must be replaced

with column n− j + 1.

In the next example, we observe that the elementary operations performed on rows and co-

lumns of matrix A will give rise to a new matrix which considers the elements of the matrix A rewritten

from bottom to top and from right to left.

Example 6 (Pentadiagonal reverse-permuted matrix). Consider the matrices below.
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A =





























1 −1 0 0 0 0

1 2 0 1 0 0

1 0 −1 0 0 0

0 1 −1 3 1 0

0 0 0 1 −1 0

0 0 0 −1 −1 2





























and A =





























2 −1 −1 0 0 0

0 −1 1 0 0 0

0 1 3 −1 1 0

0 0 0 −1 0 1

0 0 1 0 2 1

0 0 0 0 −1 1





























.

The matrix A does not belong to the set PD because the third row of A does not satisfy none of

the six items ((a), (b), (c), (d), (e), and , (f)) described in Definition 2.1. However, rows 1 to 6 from

the reverse-permuted matrix A satisfy the conditions presented in Definition 2.1: rows 1, 2, and 4 -

item (a); rows 3 and 5 - item (c); row 6 - item (f). Therefore, by Theorem 3.1 from Almeida and

Remigio (2023), the matrix A belongs to the set PD.

The elementary operation which swaps two rows (or two columns) of a matrix can be repre-

sented by a permutation matrix. To swap two rows l and m from a matrix A, we just multiply the

permutation matrix P = P (l,m) by A. This matrix permutation is obtained from the identity matrix I by

permuting the rows l and m. Besides, if we consider AP , then the columns l and m from A will be

permuted.

According to previous notation, it is evident that every permutation matrix is invertible, because

P P = I. Therefore P−1 = P .

The commutative property P (l,m) P (r,s) = P (r,s) P (l,m) is valid if l,m, r, s are distinguished two

by two (see Proposition 5.2). To prove this property, we consider the following notation:

• the elements of identity matrix I will be denoted by δij =







1, if i = j,

0, if i ̸= j;

• the elements of matrix P (l,m) will be denoted by νij ;

• the elements of matrix P (r,s) will be denoted by ρij .

Proposition 5.2. Given the matrices of order n, C = P (l,m) P (r,s) and F = P (r,s) P (l,m), we can prove

that C = F , if l,m, r, s are distinguished two by two.

Proof. Using standard procedure, it will be shown that each element cij from matrix C is equal to the

respective element fij from matrix F .
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Suppose that i and j are distinct from l,m, r, s. Thus

cij =
n
∑

k=1

νik ρkj =
n
∑

k=1

δik ρkj = δii ρij = δij =







1, if i = j,

0, if i ̸= j.

The other cases are (I) i = l; (II) i = m; (III) i = r; (IV) i = s. We will show only the first case

(I), the other cases follow similarly.

(I) i = l −→ clj =
n
∑

k=1

νlk ρkj =
n
∑

k=1

δmk ρkj = δmm ρmj = δmj =







1, if j = m,

0, if j ̸= m.

The elements from matrix F are calculated as follows. First, consider that i and j are distinct

from l,m, r, s. Then

fij =

n
∑

k=1

ρik νkj =

n
∑

k=1

δik νkj = δii νij = δij =







1, if i = j,

0, if i ̸= j.

The other cases are (I) i = l; (II) i = m; (III) i = r; (IV) i = s. We will show only the first case

(I), the other cases follow similarly.

(I) i = l −→ flj =
n
∑

k=1

ρlk νkj =
n
∑

k=1

δlk νkj = δll νlj = νlj = δmj =







1, if j = m,

0, if j ̸= m.

According to the previous items, C = F . Therefore, P (l,m) P (r,s) = P (r,s) P (l,m). □

Remark: Using mathematical induction, it can be shown that the order of factors does not change the

product in a finite multiplication of permutation matrices with the same characteristics of the matrices

presented in Proposition 5.2. Therefore, if P = P1 P2 · · · Pt and σ : {1, 2, · · · , t} −→ {1, 2, · · · , t} is a

bijective function, then Pσ(1) Pσ(2) · · · Pσ(t) = P .

Remark: Let P = P1 P2 · · · Pt be a product of permutation matrices, with the same characteristics

as the matrices presented in Proposition 5.2. Then, P−1 = Pt Pt−1 · · · P2 P1 = P .

It will be shown in the next proposition that det(A) = det(A).

Proposition 5.3. Let A be the reverse-permuted matrix of an order n matrix A. Then, det(A) =

det(A).

Proof. Denote by Pk the elementary matrix corresponding to the elementary operation which per-

mutes row k with row n − k + 1 from matrix A. If n is an even number, then t = n/2 permutation

matrices will be used to obtain the reverse-permuted matrix of a matrix A. If n is and odd number,

then t = (n − 1)/2 permutation matrices will be used to obtain the reverse-permuted matrix and, in
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this case, the row k = (n + 1)/2 will not be altered. In this way, A = Pt Pt−1 · · · P1AP1 · · · Pt−1 Pt.

Since Pk Pk = I, it follows that det(Pk)
2 = det(Pk Pk) = 1. Therefore, det(A) = det(A). □

The Proposition 5.4 states that if A is a pentadiagonal diagonally dominant matrix, then A is

also a pentadiagonal diagonally dominant matrix.

Proposition 5.4. The reverse-permuted matrix of a pentadiagonal diagonally dominant matrix is also

a pentadiagonal diagonally dominant matrix.

Proof. Since the matrix A = (Aij) of order n is pentadiagonal, then Aij = 0, whenever |i − j| > 2.

Let A = Pt Pt−1 · · · P1 AP1 · · · Pt−1 Pt be the reverse-permuted matrix of matrix A. The elements of

matrix A are denoted by Aij . According to the remarks given after Proposition 5.2 and considering

P = P1 · · · Pt−1 Pt, we obtain that A = P AP . Therefore, considering an element Aij from matrix

A, where |i − j| > 2, it follows that Aij = An−i+1,n−j+1 = 0, since |i − j| > 2 ⇐⇒ |(n − i + 1) −

(n − j + 1)| > 2. Moreover, |Aii| ≥ |Ai,i−2| + |Ai,i−1| + |Ai,i+1| + |Ai,i+2| ⇐⇒ |An−i+1,n−i+1| ≥

|An−i+1,n−i+3|+ |An−i+1,n−i+2|+ |An−i+1,n−i|+ |An−i+1,n−i−1|. □

We next show in Theorem 5.5 that if A has a Crout’s decomposition, and det(A) ̸= 0, then A

has a Crout’s decomposition and det(A) ̸= 0.

Theorem 5.5. Let A be a pentadiagonal diagonally dominant matrix (1) and let A be the reverse-

permuted matrix of A. If A has a Crout’s decomposition, and det(A) ̸= 0, then A has a Crout’s

decomposition and det(A) ̸= 0.

Proof. Let A be the reverse-permuted matrix of matrix A, where A is a pentadiagonal diagonally

dominant matrix. According to Proposition 5.4, we know that A is a pentadiagonal diagonally domi-

nant matrix. Besides, det(A) ̸= 0 and, according to Proposition 5.3, det(A) = det(A). Therefore, by

Theorem 4.5, the matrix A has a Crout’s decomposition. □

We finish this section by showing an application of the previous results. To do this, we return

to Example 6 to observe that det(A) ̸= 0 −→ det(A) ̸= 0 (see Proposition 5.3). Besides, if A belongs

to the set PD (Definition 2.1), then A has a Crout’s decomposition, and det(A) ̸= 0. Therefore, by

Theorem 5.5, A has Crout’s decomposition and det(A) ̸= 0.
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REMAT: Revista Eletrônica da MatemÂatica 21

6 Conclusions

We present in this work new criteria (sufficient conditions) to identify non-singular pentadia-

gonal (or tridiagonal) matrices that admit an LU decomposition. These criteria are simple, easy to

implement, and they consider non strictly diagonally dominant matrices. The conditions are simple

because they can be verified simultaneously and with low operational cost and do not require the

computationally expensive calculations of recursive processes like the Crout’s method and methods

based on determinants, as we can see in Definition 2.1, Theorem 3.1, and Theorem 3.2. Accordingly

Lemma 4.4, and Theorem 4.5, that were proved in Section 4, if A is a pentadiagonal diagonally do-

minant matrix and det(A) ̸= 0, then A has an LU decomposition (A = LU ). Therefore, our objective

has been to determine when non strictly diagonally dominant pentadiagonal matrices A, or AT , or A

(reverse-permuted matrix) belong to the set PD, or to determine when A, or AT , or A is non-singular,

by means of Theorems 3.1, and 3.2.
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