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Abstract: This paper introduces a filtering strategy for addressing optimization problems arising in binary

Support Vector Machine classification. The training optimization problem aims to solve the dual formulation

which involves a quadratic objective function subjected to a linear and box constraints. Our approach employs

a Filter algorithm with Sequential Quadratic Programming iterations that minimize the quadratic Lagrangian

approximations. Notably, we utilize the exact Hessian matrix in our numerical experiments to seek the desired

classification function. Moreover, we present a Filter algorithm combined with the Augmented Lagrangian

method aiming to accelerate the algorithm convergence. To substantiate our method’s effectiveness, we con-

duct numerical experiments through MATLAB® comparing outcomes with alternative methodologies detailed

in existing literature. Numerical experiments shows that the Filter–SQP combined with Augmented Lagrangian

method is competitive and efficient method compared with an interior-point based solver and LIBSVM software
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in relation of classification metrics and CPU-time.

Keywords: support vector machine; training; optimization; filter method; sequential quadratic programming.

Resumo: Neste artigo, introduzimos uma estratégia de Filtro para resolver o problema de otimização decor-

rente da do método de classificação Máquina de Vetores de Suporte. Este problema de treinamento visa

resolver a formulação dual, que envolve uma função objetiva quadrática sujeita a uma restrição lineares de

igualdade e caixa. Esta abordagem aplica um algoritmo de Filtro com iterações de Programação Quadrática

Sequencial, que minimizam as aproximações Lagrangiano quadráticas, usando a matriz Hessiana exata nos

experimentos numéricos, em busca da função de classificação desejada. Apresenta-se um algoritmo de Filtro

combinado com o método do Lagrangiano Aumentado visando acelerar a convergência do algoritmo. Também

apresentamos resultados numéricos obtidos ao implementar nosso algoritmo proposto no MATLAB® e com-

parar os resultados com outras metodologias da literatura. Os experimentos numéricos mostram que o método

de Filtro-SQP combinado com o método do Lagrangiano Aumentado é um método competitivo e eficiente em

relação às métricas de classificação e tempo de CPU, em comparação com um solucionador baseado em

Pontos Interiores e o software LIBSVM.

Palavras-chave: máquina de vetores de suporte; treinamento; otimização; método de filtro; programação

quadrática sequencial.

Resumen: En este trabajo, exponermos una estrategia de Filtro para resolver problemas de optimización

que surgen en la clasificación binaria de Máquinas de Vectores de Soporte. El problema de optimización del

entrenamiento tiene como objetivo resolver la formulación dual que implica una función objetiva cuadrática

sujeta a restricciones lineales y de caja. Nuestro enfoque aplica un algoritmo de Filtro con iteraciones de

Programación Cuadrática Secuencial que minimizan las aproximaciones Lagrangianas cuadráticas, utilizando

la matriz Hessiana exacta en los experimentos numéricos, en busca de la función de clasificación deseada.

Presentamos un algoritmo de Filtro combinado con el método del Lagrangiano Aumentado con el objetivo de

acelerar la convergencia del algoritmo. También presentamos resultados numéricos obtenidos al implementar

nuestro algoritmo propuesto en MATLAB® y comparamos los resultados con otras metodologı́as en la liter-

atura. Los experimentos numéricos muestran que el método del Filtro-SQP combinado con el método del

Lagrangiano Aumentado es un método competitivo y eficiente en comparación con un solucionador basado

en puntos interiores y el software LIBSVM en términos de métricas de clasificación y tiempo de CPU.

Palabras clave: máquina de vectores de soporte; entrenamiento; optimización; método de filtro; programación

cuadrática secuencial.
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1 Introduction

Support Vector Machine (SVM) has proved to be one of the most useful approaches for ma-

chine learning. Introduced by Boser, Guyon and Vapnik [3], and Cortes and Vapnik [7] for binary

classification, SVM tries to find the trade-off between the training dataset error and a maximum-

margin hyperplane, aiming to achieve the best generalization ability and avoid overfitting [6, 28]. The

fitted classification function is only based on a set of support vectors, which are a subset of the train-

ing data. This is the reason that SVM is often called as memory efficient. Another advantage of SVM

is the use of the kernel trick, which gives the versatility to classify non-linear separable data.

The SVM training problem can be equivalently formulated as a (linearly constrained) quadratic

convex problem or, by Wolfe’s duality theory, as a quadratic convex problem with one linear constraint

and box constraints. The training problem consists of solving large-scale convex programming prob-

lems, whose difficulties are mainly related with the number training instances, that leads to a huge

number of either variables or constraints. Due to structure of SVM training problem and the convexity

of the constrained problem, optimization algorithms for SVM are required to reach a solution. This is

possible because the properties of the SVM training problem are well-defined from an optimization

point of view [5, 28].

Thus, several approaches has been specifically developed to solve the SVM training prob-

lem. Chauhan, Dahiya and Sharma [5] and Piccialli and Sciandrone [28] provides a literature survey

for methods developed to solve the SVM training problem, discussing how the properties of these

problems can be incorporated in designing useful algorithms. But, regardless of the formulation, the

most known SVM binary classification package is LIBSVM [4]. LIBSVM utilize a decomposition strat-

egy based on Sequential Minimal Optimization [29], dealing with the constrained dual formulation for

solving iteratively two sets of variables: a working set with two determined variables and a second

set with the rest of fixed variables.

In addition to LIBSVM package, it is worth mentioning some others methods for SVM training

problem. LIBLINEAR [11] is a SVM unconstrained formulation (primal or dual), using three users-

choice hinge loss functions. Depending on the chosen hinge loss function, LIBLINEAR uses the

coordinates algorithm [18] or Trust Region Newton Method [22]. PEGASOS [32] uses a stochas-

tic sub-gradient method to solve primal constrained formulation with L1-hinge loss. SVMlight [20]

solves the dual constrained formulation using a generalized decomposition strategy. SVMperf [21]

uses a cutting-plane algorithm for training a structural classification SVM, while some extensions
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applies bundle methods for large scale datasets [31]. Lagrangian SVM method was proposed by

Mangasarian and Musicant [23], which uses the Lagrangian function structure for linear and non-

linear classification problems. Some methods are based in classical optimization approaches, such

as interior-point methods [12, 36, 35] and Augmented Lagrangian [25, 38, 37], which produced good

results with high dimensional optimization problems.

In this paper, we introduce and propose an algorithm to solve the dual constrained SVM prob-

lem such as [7, 29, 4]. The algorithm is based on Filter methods [13, 15, 27, 19]. The central idea is

to find a point not prohibited by the filter from the current point. To find this point, the Filter method

uses sequential quadratic programming (SQP) iterations, which minimize a quadratic Lagrangian ap-

proximations of the objective function. In this paper the Filter method used is based on [27] combined

with the Augmented Lagrangian method to solve the feasibility step and then accelerate the algorithm

convergence. In the numerical experiments, we use exact Hessian matrix, but a general matrix can

also be used. The SQP iterations generates two optimization subproblems and we solve them by

applying the Augmented Lagrangian and an interior-point method.

This paper is organized as follow. In Section 2, we describe the essential elements to present

this paper, such as problem statement and preliminaries. In Section 3, we describes the Filter-SQP

used for solving the problem. Numerical experiments are reported in Section 4. Finally, concluding

remarks close our text in Section 5.

2 Problem statement and preliminaries

This section establishes notation and gives basic results that will be used throughout the

paper. For further study about SVM, we suggest the following works [3, 7, 5, 8, 30, 33, 17, 9, 28].

Among all variations and formulations about SVM, in this paper we focus on the SVM binary

classification approach, solving the dual form of SVM. Thus, the learning task of SVM is basically

minimize a constrained quadratic programming problem. Giving the training instances/data (xi, yi),

i = 1, . . . , n, where xi ∈ Rp are the observations and yi ∈ {−1, 1} are the labels, the SVM classifica-
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tion model requires the solution of the following optimization problem:

minimize
α

f(α) =
n∑

i=1

n∑
j=1

αiαjyiyjK(xi, xj)−
n∑

i=1

αi

subject to
n∑

i=1

yiαi = 0

0 ≤ αi ≤ C,∀i ∈ {1, . . . , n},

(1)

where α ∈ Rn, K(·, ·) is a chosen kernel function and C ∈ R∗
+ is the parameter upper bound of all

variables.

Problem (1) can be reformulated equivalently in a matricial form as follows,

minimize
α

f(α) =
1

2
αTPα− eTα

subject to yTα = 0

0 ≤ α ≤ C,

(2)

where e ∈ Rn is a vector of ones, y ∈ Rn, y = (y1, . . . , yn)
T , is the label vector and P ∈ Rn×n is a

symmetric matrix with Pi,j = yiyjK(xi, xj) for i, j ∈ {1, . . . , n}.

It should be pointed some facts about the chosen kernel function in SVM problem. The dual

formulation of SVM (1) gives the opportunity to apply the kernel trick [7], which measures the similarity

of two points in a high-dimensional space without building it. Another interesting fact about kernel

functions satisfying the Mercer’s theorem, we can guarantee that the fully dense symmetric P matrix

in problem (2) is semidefinite positive [33]. This guarantees the convexity of Problem (2).

The classification function is estimated using the optimal solution, α∗, of Problem (2) as follows

(see [7, 8, 30]).

f(x) = sign

(∑
i∈S

α∗
i yiK(xi, x) + b∗

)
, (3)

where S = {i : α∗
i > 0} is the index subset of support vectors of the fitted model. It should be noted

that the bias value b∗ in classification function (3) can be estimated by Karush-Kuhn-Tucker (KKT)

conditions of Problem (2) [8, 2, 4].

In case that exists 0 < α∗
j < C, we have a closed formula for the j-bias value,

b∗j =

(
yj −

∑
i∈S

α∗
i yiK(xi, xj)

)
.
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Gonçalves, RS, v. 9, n. 2, p. e3004, October 30, 2023. https://doi.org/10.35819/remat2023v9i2id6241.

https://doi.org/10.35819/remat2023v9i2id6241


REMAT: Revista Eletrônica da Matemática 6

For numerical stability, we average them

b∗ =
1

|I|
∑
j∈I

(
yj −

∑
i∈S

α∗
i yiK(xi, xj)

)
, (4)

where I = {j : 0 < α∗
j < C} and |I| is the number of elements in I. For the case where no α∗

j is

between 0 and C, we take b∗ as the midpoint of the range generated by the KKT conditions of Problem

(2),

max{yj∇f(α)j : α
∗
j = 0, yj = 1 or α∗

j = C, yj = −1}

≤ b∗

≤ min{yj∇f(α)j : α
∗
j = 0, yj = −1 or α∗

j = C, yj = 1}.

(5)

We emphasize that the estimate of b∗ is the same as computed in LIBSVM [4].

3 Filter-SQP algorithm

In this section, we present the main contribution of the paper which consists in the develop-

ment of a framework to solve the SVM problem, given in (2), based on the Filter method. The Filter

algorithm was proposed by Fletcher and Leyffer [13] and extended by several works, but in this paper

we use a general Filter algorithm as depicted in [27].

Before getting started, we will highlight some considerations adopted. Let cE : Rn → R be the

function related to the equality constraint of Problem (2), defined by

cE(α) = yTα− ϵ, (6)

where ϵ ∈ R∗
+ is as small as you want. This was assumed to guarantee numerical stability of the

proposed algorithm. Also, consider cI : Rn → R2n function related to the box constraints,

cI(α) =

α− C

−α

 , (7)

and let AE ∈ R(1×n) and AI ∈ R(2n×n) be the Jacobian matrices associated with the functions cE

and cI , respectively, as well the Lagrangian multipliers of these constraints functions as λE ∈ R and

λI ∈ R2n.

First, we will comment about the Filter algorithm. It is an algorithm that aims to minimize both

the objective function f and a measure of infeasibility h : Rn → R+, defined here as

h(α) = |yTα− ϵ|, (8)
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where | · | is the absolute value. At each iteration, the Filter algorithm will try to improve these criteria

under a domination rule. These two criteria, objective values and infeasibility measure, together

define a forbidden region composed by points (f(αk), h(αk)), suitably chosen from former iterations.

So, we want to avoid points in the regions

Rk = {α ∈ Rn : f(α) ≥ f(αk) and h(α) ≥ (1− β)h(αk)}, (9)

where β ∈ (0, 1) is constant. The points αk which belongs the aforementioned forbidden region R

also compose a permanently forbidden region in Rn, denoted here by Fk. As the Filter algorithm is

an iterative method, we also consider F̄k = Fk
⋃
Rk as the temporarily forbidden region.

From now on, in order to simplify the notation, we write (fk, hk) to represent the pair (f(αk),

h(αk)). The core idea of the Filter algorithm is to construct a sequence of filter sets F0, F1, . . . , Fk

composed of pairs (fk, hk) ∈ R2. The temporarily forbidden region F̄k is used to provide a new

iterated point αk ̸∈ F̄k, which region is later updated at the end of the iteration. Thus, in the interaction

k iteration, it is expected that αk+1 must give a better results than αk for at least one criteria. In case

that (fk+1, hk+1) does not produce a reduction in f , this pair will become permanent in the filter,

updating the sets by

Fk+1 = F̄k\{(f l, hl) ∈ Fk,Rl ⊂ Rk} and Fk+1 = F̄k. (10)

As Periçaro, Ribeiro and Karas [27] mentions, the Rule (10) is applied because it removes all pairs

(f l, hl) ∈ Fk which define a forbidden region that is a subset of the region related to the pair

(fk+1, hk+1). On the other hand, if (fk+1, hk+1) does produce a reduction in objective value, the

pair (fk+1, hk+1) is simply discarded and the filter is not updated for the next iteration.

The Filter algorithm generates a subproblem, which consists of computing a new point that

not belongs to the temporarily forbidden region, that is, αk+1 ̸∈ F̄k. Here we use the SQP algo-

rithm, adjusting the steps to comply the filter rule. In the Filter-SQP algorithm, each iteration starts

with a point αk, an estimate of the objective function fk = f(αk), gradient of the objective function

∇fk = ∇f(αk) and Bk ∈ Rn×n a symmetric matrix, and then it computes a second order Lagrangian

approximation of objective function as

mk(α
k + d) = fk + (∇fk)Td+

1

2
dTBkd, (11)

and a linear approximation around αk of the equality constraint, defined as

Lk = {αk + d ∈ Rn : yTαk + yTd = 0}. (12)
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We point out that any symmetric matrix can be used in the model mk, but if it is possible to compute

and storage the original Hessian matrix of objective function f , namely matrix P in Problem (2), the

proposed algorithm will give a more accurate classifier.

The main idea of the Filter-SQP is to minimize the model mk in the intersections of a trust

region with the set Lk given in (12). We will describe the essence of this idea, but for more details

on SQP algorithms and trust-region methods, see [26]. Thereby, the step is computed by solving the

quadratic subproblem

minimize
d

mk(α
k + d)

subject to αk + d ∈ Lk

αk + d ∈ Ω

∥d∥∞ ≤ ∆kr ,

(13)

where the set Ω = {α ∈ Rn : 0 ≤ α ≤ C} is the box constraint in Problem (2) and ∆kj > 0 is the

trust region radius. Thus, a solution d̄r of subproblem (13) will compose a new trial point αk + d̄r

for the filter, which will be further evaluated. That is the reason for the r iteration index, since in the

k-iteration of the Filter algorithm we can have r-iterations until the trial point be accepted.

We expect that the trial point can fulfill the filter criteria, which is to be in a non forbidden

region, and provides a sufficient decrease in the condition used by trust-region algorithm. So, the

radius ∆ must be chosen so that the subproblem (13) has a solution.

As Periçaro, Ribeiro and Karas [27] mentioned, the solution d̄r can be decomposed in a sum

of two components: a feasibility step nk and a tangential step t∆kr
. The feasibility step nk must satisfy

the constraints of subproblem (13), reducing the inviability measure h, while the tangential step t∆kr

must produce a satisfactory decrease in the model (13).

Here, we compute nk by projecting αk into Lk in the form of an optimization problem,

minimize
n

1

2
∥n∥2

subject to yTn+ yTαk − ϵ = 0

0 ≤ n+ αk ≤ C

(14)

and we compute an approximated tangential step by solving the following optimization problem.

minimize
t

(∇fk +Bkn
k)T t+

1

2
tTBkt

subject to yT t = 0

l ≤ t ≤ u

(15)
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where l = min{αk + nk,∆kr + nk} and u = min{C − αk − nk,∆kr − nk}.

Once the step d̄ is computed, then the trial point αk + d̄r must be evaluated. Thus, consider

ared as a real reduction in objective function,

ared = f(αk)− f(αk + d̄r), (16)

and pred as the predicted reduction by model mk,

pred = mk(α
k)−mk(α

k + d̄r). (17)

In that way, the step d̄r will be accepted when both the real reduction is less than a fraction η ∈ (0, 1)

of the predicted reduction and the predicted reduction is less than a fraction cp > 0 of the inviability

measure, that is,

ared > η · pred and pred ≥ cp · h(αk + d̄r)
2, (18)

because, otherwise, the model mk poorly fits the objective function in the region delimited by ∆kr

and, in this case, we decrease the radius by ζ and get a new model.

In the case where L = ∅ or the subproblem (13) is not compatible, that is,

∥nk∥ > ξ ·∆kr

where ξ ∈ (0, 1), the proposed algorithm will call a restoration procedure, aiming to obtain a point

αk+1 not in the temporary filter but that has a low measure of infeasibility. Here, we simple apply the

[16] algorithm if necessary.

Therefore, we present the Filter-SQP strategy for the training SVM Problem (2) in the Frame-

work 1. We point out that the Jacobian matrix and the Lagrangian multipliers of the feasible set from

Problem (2) are defined as A = (AE , AI)
T and λ = (λE , λI)

T , respectively. For the stopping criteria,

we assume both optimality conditions and KKT conditions.

Framework 1: Filter-SQP strategy

Step 0: Choose ϵ, δ, cp > 0 and β, η, ζ, ξ ∈ (0, 1). Set k = 0, Fk = ∅, Fk = ∅, F̄k = ∅, ∆k0 ∈

[∆min,∆max], with 0 < ∆min < ∆max, and αk ∈ Rn.

Step 1: Set r = 0 and Lk by (12).

If Lk = ∅, use a restoration procedure to obtain αk+1 ̸∈ Fk and go to Step 3. Else, compute the
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feasibility step

nk by solving the Problem (14).

Step 2: If ∥nk∥ > ξ·∆kr , use a restoration procedure to obtain αk+1 ̸∈ Fk and go to Step 3. Otherwise,

compute the tangential step

t∆kr
by solving the Problem (15),

compose the trial point

αk + d̄r = αk + nk + t∆kr
,

and evaluate the trial point. If the trial point satisfies (18), make

αk+1 = αk + d̄r

and go to Step 3. Otherwise, set ∆kr+1 = η ·∆kr and r = r + 1, and do Step 2 again.

Step 3: Check if αk+1 obey the Filter rule. If f(αk+1) ≥ f(αk), then update the Filter’s sets by (10).

Step 4: Test convergence: If

∥PLk
(αk+1 −∇f(αk+1))− αk∥∞ ≤ δ and h(αk+1) ≤ δ, (19)

where PLk
is the orthogonal projection onto Lk, or

∥∇f(αk+1) +ATλ∥ ≤ δ and ∥λI ◦ cI∥∞ ≤ δ and h(αk+1) ≤ δ, (20)

where ◦ is the Hadamard product, are satisfied, then stop. Otherwise, set k = k + 1 and return to

Step 1.

The Theorem 3.1 below states the convergence of the Framework 1.

Theorem 3.1. The Framework 1 is well-defined and the sequence (αk) generated by it is convergent.

Proof. From Step 1 and Step 2 of Framework 1 we always compute a αk+1 ̸∈ Fk. This means that

whenever the current point is not stationary, a new not forbidden point can be chosen. And since

the optimization subproblems solved in (14) and (15) are quadratic in a compact set, by the Bolzano-

Weierstrass theorem we always compute a solution. In [27] a more general scenario is presented.

About the convergence of the Filter-SQP algorithm, notice that the objective function and constraints

are at least twice differentiable and the Problem (2) is a quadratic box constraints. This means that

any sequence of (αk) generated by Framework 1 always remains in a convex compact domain. The

convergence of Framework 1 follows from Section 4 of [27].
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In the next section we present numerical experiments by running the algorithm with a bench-

mark datasets extracted in LIBSVM website.

4 Numerical Experiments

In this section we illustrate the performance of our proposed algorithm. All the computational

results were obtained using an Intel (R) Core i7-9750H CPU @ 2.60GHz 2.60 GHz processor, 16Gb

of RAM and Windows 10 operating system, implemented in a MATLAB® software, version R2019a.

The Filter-SQP method implemented in this work is available at GitHub repository https://github.

com/tiagobeautiful/Remat-Opt_Algorithm/.

4.1 Framework of the experiment

The problems we analyzed were extracted from LIBSVM website1. The selected datasets are

depicted in Table 1. We also describe the number of instances to train and test the model, attributes,

non-zero elements and the density, given by the ratio between non-zeros and m × p. The class

proportion of train and test sets is also displayed. For the case where a dataset does not have a pre-

defined test set, highlighted in italic in the second column of Table 1, we split randomly the original

dataset to 80% training and 20% testing.

1Available at: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Accessed in: August 2022.
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Table 1 – Description of the 29 binary-class data sets

Id Dataset ntrain ntest p Non-zero Density (%)
Class proportion (-/+)

Train Test

1 australian 552 138 14 7724 79.96 54.7/45.3 58.7/41.3

2 australian.scale 552 138 14 8447 87.44 57.4/42.6 47.8/52.2

3 breast.cancer.scale 547 136 10 6830 100 63.8/36.2 69.9/30.1

4 colon.cancer 50 12 2000 124000 100 66.0/34.0 58.3/41.7

5 diabetes 615 153 8 5381 87.58 34.5/65.5 36.6/63.4

6 diabetes.scale 615 153 8 6135 99.85 36.3/63.7 29.4/70.6

7 duke 39 5 7129 313676 100 47.2/52.8 50.0/50.0

8 fourclass 690 172 2 1724 100 63.8/36.2 66.9/33.1

9 fourclass.scale 690 172 2 1717 99.59 65.4/34.6 60.5/39.5

10 german.numer 800 200 24 17989 74.95 70.1/29.9 69.5/30.5

11 german.numer.scale 800 200 24 23001 95.84 69.9/30.1 70.5/29.5

12 heart 216 54 13 2636 75.1 55.6/44.4 55.6/44.4

13 heart.scale 216 54 13 3378 96.24 56.9/43.1 50.0/50.0

14 ionosphere 281 70 34 10551 88.41 34.5/65.5 41.4/58.6

15 mushrooms 6500 1624 112 170604 18.75 48.6/51.4 46.4/53.6

16 sonar 167 41 60 12479 99.99 55.1/44.9 46.3/53.7

17 a1a 1605 30956 119 451592 11.65 75.4/24.6 75.9/24.1

18 a2a 2265 30296 119 451592 11.65 74.7/25.3 76.0/24.0

19 a3a 3185 29376 122 451592 11.37 75.7/24.3 75.9/24.1

20 a4a 4781 27780 122 451592 11.37 75.2/24.8 76.1/23.9

21 leukemia 38 34 7129 513288 100 28.9/71.1 41.2/58.8

22 madelon 2000 600 500 1299999 100 50.0/50.0 50.0/50.0

23 splice 1000 2175 60 190500 100 48.3/51.7 48.0/52.0

24 splice.scale 1000 2175 60 190500 100 48.3/51.7 48.0/52.0

25 svmguide1 3089 4000 4 28304 99.82 35.3/64.7 50.0/50.0

26 svmguide3 1243 41 22 22775 80.63 76.2/23.8 100.0/0.0

27 w1a 2477 47272 300 579586 3.88 97.1/2.9 97.0/3.0

28 w2a 3470 46279 300 579586 3.88 96.9/3.1 97.0/3.0

29 w3a 4912 44837 300 579586 3.88 97.1/2.9 97.0/3.0

From Table 1 it is possible to see that most of the dataset has high density, which means they

have many non-null elements. In case the datasets has missing data, we considered as zero and we

do not perform any statistical treatment to the sparse datasets. Moreover, we noticed that some of

the datasets is non balanced between the classes.
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For each dataset, the experiments were run first to tune the hyper-parameters of Problem

(2) and later predict the results given a test set. So, we will test all methods based on different

parameters and choose the best results obtained in all cases. Aiming to get the best algorithm’s

performance, we made a grid search [14] to tune C and γ hyper-parameters in Problem (2). We

choose C ∈ {0.1, 1, 10, 102, 103, 104, 105} and the Gaussian radial basis function,

K(xi, xj) = exp(−γ∥xi − xj∥2),

where γ ∈ {50, 10, 4, 1, 1/p, 10−3, 10−4, 10−5, 10−6}, with p being the number of problem attributes, as

the kernel function. The grid search will be done in a 5-fold validation [17] only with the training set.

Thus, the best parameters will be chosen by the maximum average accuracy in the 5-fold validation

phase. Later, we made a test phase to make predictions after a trained model with the best hyper-

parameters. Figure 1 illustrate the framework of the experiment.

Figure 1 – Framework of the experiment

Given a dataset Validation phase Test phase

Do a 5-fold with the
training set

Get the best hyper-
parameters from the
validation predictions

Disjoint training and
test sets

Adjust a model with
entire training set

Make predictions with
test set

Source: Elaborated by the authors.

4.2 Performance analysis

We will test the algorithm’s performance and report metrics based on a confusion matrix.

A confusion matrix is a table that is used to evaluate the performance of a classification model. It

shows the number of correct and incorrect predictions made by the model compared to the actual

labels of the dataset. The matrix is constructed by counting the occurrences of true positive (TP), true

negative (TN), false positive (FP), and false negative (FN) predictions. The true positive represents

the cases where the model correctly predicted the positive class, while the true negative represents

the correct predictions of the negative class. False positive occurs when the model incorrectly predicts

the positive class, and false negative occurs when the model incorrectly predicts the negative class.
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The matrix provides a comprehensive view of the model’s performance, enabling the calculation of

various evaluation metrics. In this paper, we analyse:

• Accuracy : measures the ratio of correctly classified observations by total observations from

the sample. It is calculated by

Accuracy =
TP + TN

TP + TN + FP + FN
;

• Balanced accuracy : measures the same as accuracy, but it takes into account the balance of

classes in the dataset, defined as

Balanced accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
;

• Matthews correlation coefficient : introduced by Matthews [24], this coefficient evaluate the

predictions from the classification model. It is defined by

ϕ =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
.

The Matthews correlation coefficient penalizes the FP and FN predictions, and it is a better

evaluator if the classes have different sizes [1]. The ϕ coefficient ranges from -1 to 1, which

ϕ = 1 indicate the perfect prediction, ϕ = 0 no better than a random choice and ϕ = −1

indicate the inverse classification.

We consider the case of a draw in the results. For that, consider the ratio as the percentage

misclassified instances rate (MIR) in the test phase for a method,

MIR =
FN + FP

TP + TN + FP + FN
· 100.

MIR display the fraction of incorrect predictions. When we get the absolute difference of MIR ratio

between methods under 2%, it will be considered a draw. Since MIR depends on the number of test

instances, taking the absolute difference of MIR values show how discrepant the methods behaved.

So 2% is a reasonable choice for this comparison.

We also plot a performance profile based on [10], displayed in log2 scale. Given a CPU run-

time v, for a k ∈ P problems and a m ∈ M method, the performance ratios used in this comparative

study are defined by
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Performance ratio =
vk,m

min{vk,j : j ∈ M}
,

and the overall evaluation performance of a particular solver m is given by

Overall performance =
1

np
card{k ∈ P : rs,k ≤ κ},

where np is the number of problems in the set P.

4.3 Algorithms utilized

The generated optimization problems were solved by the proposed algorithm, LIBSVM version

3.25 and MATLAB® quadprog function in default mode.

About the proposed algorithm, we adopted the tolerance δ of the stopping criteria (19) and (20)

as 10−5. Moreover, we limited the Filter algorithm to the maximum of 50 iterations. The parameters

from [27] Filter-SQP algorithm are described as follows: ϵ = 10−8, β = 0.1, α0 = 0, Bk = ∇2f(α) = P ,

∆0 = 106 · min{∥∇f(α0)∥, h(α0)}, ξ = 0.8, η = 0.01, cp = 10−4 and ζ = 0.5.

In order to solve the feasibility step nk, as in the quadratic Problem (14), we apply two different

algorithms to compare the performance of Filter algorithm. The first one is the quadprog routine of

MATLAB®, which will be called Filter-A, and the other being an Augmented Lagrangian based method

detailed in [34], which will be called Filter-B. The advantage of [34] method is that it determine the

problem’s solution by a closed formula depending only on sum and product of vectors.

For the evaluation of the tangential step t∆, we considered the infinity norm in the definition

of the trust regions. To solve the quadratic subproblem (15) in Filter-A and Filter-B, it was applied

the quadprog routine of MATLAB® using the interior-point algorithm. Although Problem (2) has the

same characteristics compared to subproblem (15), these problems are quite different in the context.

For the sake of simplicity we list the acronymous on Table 2.
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Table 2 – Synthesis of algorithms utilized in this experiment

Method Strategy Observation

Filter-A Filter-SQP (14) and (15) solved by quadprog

Filter-B Filter-SQP
(14) solved by [34]

(15) solved by quadprog

quadprog Interior-point default mode

LIBSVM Decomposition –

4.4 Results and discussion

Regarding the parameter tunning, for each algorithm and dataset, we tried to solve 315 prob-

lems. In terms of success to find the solution, 100% of problems converged for LIBSVM and quad-

prog. The proposed algorithm, Filter-A and Filter-B, converged for 99.4% and 98.12% of problems,

respectively. Although the current solution appeared to be optimal in both cases, Filter-A and Filter-B

were not able to meet the stopping criteria (19)-(20). Thus, for the cases where Filter-A and Filter-B

did not reach the solution, we excluded the problems in the analysis.

Figure 2 shows a boxplot of resulting accuracy with the grid search realized, which was the

metric chosen as the best parameters. It is remarkable that Filter-A and Filter-B are competitive with

quadprog and LIBSVM, as the median accuracy and the 3rd quartile of Filter-A and Filter-B are both

slightly smaller than the LIBSVM algorithm. Because of γ′s values in RBF kernel, lower accuracy

values were expected in the evaluation (represented in the boxplot as the minimum value and out-

liers). We must note that both Filter’s based algorithms have a similar behavior when compared to

quadprog.
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Figure 2 – Boxplot of accuracy in grid search process for 29 datasets

Source: Elaborated by the authors.

Once the γ and C parameters were adjusted, we advance to the test phase. All optimization

problems generated were run for all algorithms, which the prediction results are compiled as follows,

reporting the number of support vectors, accuracy, balanced accuracy and, when it is possible, the ϕ

coefficient. For each table presented, the best value is in bold.

In Table 3 we depicted the amount of support vectors and cpu-time for training the model.

Identify a small subset of crucial training examples called support vectors play a vital role in defining

the decision boundary and can significantly reduce the complexity of the model. From Table 3, the

number of support vectors and the training time of a SVM can vary depending on the algorithm

employed, but all optimization algorithm used in this comparison got similar values in general.
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Table 3 – Support vectors and train cpu-time comparisons of Filter-A, Filter-B, quadprog and LIBSVM

with RBF kernel function. In the table, “A = Filter-A”, “B = Filter-B”, “C=quadprog” and

“D=LIBSVM”
Support vectors Train Time

Id (ntrain,ntest,p)
A B C D A B C D

1 (552, 138, 14) 265 236 236 204 2.32 0.008 0.064 0.927

2 (552, 138, 14) 210 210 210 210 0.127 0.009 0.039 0.009

3 (547, 136, 10) 45 55 55 48 3.01 0.009 0.036 0.003

4 (50, 12, 2000) 40 40 40 40 0.037 0.001 0.002 0.007

5 (615, 153, 8) 315 306 315 336 1.059 0.012 0.042 0.017

6 (615, 153, 8) 354 354 354 354 0.148 0.011 0.048 0.013

7 (36, 8, 7129) 34 34 34 34 0.048 0.003 0.004 0.017

8 (690, 172, 2) 40 40 40 110 0.615 0.015 0.057 0.004

9 (690, 172, 2) 184 184 184 186 0.182 0.015 0.061 0.009

10 (800, 200, 24) 446 446 446 380 1.792 0.023 0.073 0.289

11 (800, 200, 24) 482 482 482 405 2.981 0.023 0.092 0.14

12 (216, 54, 13) 84 106 84 85 0.939 0.001 0.008 0.013

13 (216, 54, 13) 170 170 170 96 0.036 0.002 0.006 0.002

14 (281, 70, 34) 52 52 52 70 0.353 0.002 0.009 0.003

15 (6500, 1624, 112) 6500 6500 6500 6500 12.91 4.874 12.511 16.001

16 (167, 41, 60) 80 82 82 82 0.236 0.001 0.004 0.003

17 (1605, 30956, 123) 766 760 760 645 88.095 0.216 5.87 0.155

18 (2265, 30296, 123) 1081 1071 1105 876 890.321 0.465 17.885 0.371

19 (3185, 29376, 123) 1430 1430 1763 1184 576.783 0.757 39.005 1.471

20 (4781, 27780, 123) 3743 2402 4781 1774 7682.521 1.732 124.629 1.217

21 (38, 34, 7129) 30 30 29 30 0.12 0.018 0.03 0.018

22 (2000, 600, 500) 2000 2000 2000 2000 6.641 1.923 3.378 2.343

23 (1000, 2175, 60) 480 480 481 743 22.266 0.078 1.237 0.1

24 (1000, 2175, 60) 608 608 605 592 5.971 0.084 0.954 0.094

25 (3089, 4000, 4) 2477 2171 2667 256 64.757 0.09 3.471 0.242

26 (1243, 41, 22) 471 436 436 436 4586.374 0.571 65.694 0.065

27 (2477, 47272, 300) 824 193 247 162 952.892 0.335 25.111 0.073

28 (3470, 46279, 300) 1195 1195 273 247 676.845 0.59 84.699 0.125

29 (4912, 44837, 300) 306 402 325 278 1764.449 1.173 213.672 0.251
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As for accuracy values, displayed in Table 4, in 10 problems the resulting values were the

same for 4 methods (Ids 2, 3, 4, 7, 9, 13, 15, 21, 22, 27), with LIBSVM method getting better values

in 13 occasions than Filter-A, Filter-B and quadprog (Ids 1, 8, 14, 16, 17, 18, 19, 20, 23, 24, 26, 28,

29). As for the balanced accuracy and ϕ coefficient results, depicted in Table 4 and 5, respectively,

it was reported that in 8 datasets the algorithms got the same values (Ids 2, 4, 7, 9, 13, 15, 21, 22)

for both metrics. It is important to note that these 8 datasets got the same values of accuracy as well

for all algorithms in the experiment. It is also noteworthy that, for this numerical experiment, Filter-A

and Filter-B got higher values in 11 datasets for balanced accuracy than LIBSVM (Ids 3, 8, 10, 12,

14, 16, 17, 18, 27, 28, 29), while getting lower values in 12 datasets in relation of ϕ coefficient values

(Ids 1, 6, 8, 12, 14, 16, 17, 20, 23, 24, 28, 29).
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Table 4 – Accuracy and balanced accuracy comparisons of Filter-A, Filter-B, quadprog and LIBSVM

with RBF kernel function. In the table, “A = Filter-A”, “B = Filter-B”, “C=quadprog” and

“D=LIBSVM”

Id (ntrain,ntest,p)
Accuracy Balanced Accuracy

A B C D A B C D

1 (552, 138, 14) 0.711 0.763 0.763 0.812 0.363 0.448 0.448 0.611

2 (552, 138, 14) 0.866 0.866 0.866 0.866 0.719 0.719 0.719 0.719

3 (547, 136, 10) 0.963 0.956 0.956 0.949 0.482 0.471 0.471 0.459

4 (50, 12, 2000) 0.757 0.757 0.757 0.757 0.571 0.571 0.571 0.571

5 (615, 153, 8) 0.707 0.711 0.711 0.659 0.762 0.752 0.752 0.790

6 (615, 153, 8) 0.681 0.681 0.681 0.675 0.791 0.791 0.791 0.834

7 (36, 8, 7129) 0.875 0.875 0.875 0.875 0.727 0.727 0.727 0.727

8 (690, 172, 2) 0.996 0.996 0.996 1.000 0.500 0.500 0.500 0.498

9 (690, 172, 2) 1.000 1.000 1.000 1.000 0.567 0.567 0.567 0.567

10 (800, 200, 24) 0.725 0.759 0.725 0.728 0.311 0.443 0.390 0.343

11 (800, 200, 24) 0.705 0.705 0.695 0.677 0.311 0.311 0.316 0.265

12 (216, 54, 13) 0.808 0.808 0.808 0.804 0.529 0.529 0.529 0.500

13 (216, 54, 13) 0.889 0.889 0.889 0.889 0.587 0.587 0.587 0.587

14 (281, 70, 34) 0.884 0.867 0.867 0.914 0.769 0.777 0.777 0.774

15 (6500, 1624, 112) 1.000 1.000 1.000 1.000 0.698 0.698 0.698 0.698

16 (167, 41, 60) 0.898 0.898 0.898 0.925 0.712 0.712 0.712 0.700

17 (1605, 30956, 123) 0.831 0.830 0.830 0.844 0.777 0.777 0.777 0.754

18 (2265, 30296, 123) 0.829 0.829 0.829 0.842 0.791 0.791 0.791 0.767

19 (3185, 29376, 123) 0.828 0.828 0.827 0.835 0.795 0.795 0.796 0.752

20 (4781, 27780, 123) 0.838 0.838 0.838 0.846 0.741 0.740 0.739 0.759

21 (38, 34, 7129) 0.824 0.824 0.824 0.824 0.786 0.786 0.786 0.786

22 (2000, 600, 500) 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683

23 (1000, 2175, 60) 0.892 0.892 0.892 0.903 0.894 0.894 0.894 0.904

24 (1000, 2175, 60) 0.895 0.895 0.895 0.897 0.896 0.896 0.896 0.897

25 (3089, 4000, 4) 0.971 0.971 0.971 0.973 - - - -

26 (1243, 41, 22) 0.780 0.805 0.805 0.756 - - -

27 (2477, 47272, 300) 0.977 0.977 0.977 0.977 0.769 0.768 0.768 0.751

28 (3470, 46279, 300) 0.979 0.979 0.979 0.981 0.779 0.779 0.778 0.748

29 (4912, 44837, 300) 0.980 0.980 0.980 0.982 0.803 0.803 0.800 0.768
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Table 5 – Matthews correlation values comparisons of Filter-A, Filter-B, quadprog and LIBSVM with

RBF kernel function. In the table, “A = Filter-A”, “B = Filter-B”, “C=quadprog” and

“D=LIBSVM”

Id (ntrain,ntest,p)
ϕ

A B C D

1 (552, 138, 14) 0.474 0.546 0.546 0.615

2 (552, 138, 14) 0.748 0.748 0.748 0.748

3 (547, 136, 10) 0.890 0.88 0.885 0.881

4 (50, 12, 2000) 0.507 0.507 0.507 0.507

5 (615, 153, 8) 0.425 0.429 0.429 0.340

6 (615, 153, 8) 0.359 0.359 0.359 0.372

7 (36, 8, 7129) 0.775 0.775 0.775 0.775

8 (690, 172, 2) 0.987 0.987 0.987 1.000

9 (690, 172, 2) 1.000 1.000 1.000 1.000

10 (800, 200, 24) 0.481 0.486 0.431 0.462

11 (800, 200, 24) 0.422 0.422 0.393 0.387

12 (216, 54, 13) 0.624 0.624 0.624 0.626

13 (216, 54, 13) 0.786 0.786 0.786 0.786

14 (281, 70, 34) 0.798 0.770 0.770 0.859

15 (6500, 1624, 112) 1.000 1.000 1.000 1.000

16 (167, 41, 60) 0.806 0.806 0.806 0.853

17 (1605, 30956, 123) 0.544 0.544 0.544 0.549

18 (2265, 30296, 123) 0.556 0.556 0.556 0.553

19 (3185, 29376, 123) 0.560 0.560 0.560 0.528

20 (4781, 27780, 123) 0.525 0.525 0.525 0.554

21 (38, 34, 7129) 0.663 0.663 0.663 0.663

22 (2000, 600, 500) 0.367 0.367 0.367 0.367

23 (1000, 2175, 60) 0.788 0.788 0.788 0.807

24 (1000, 2175, 60) 0.792 0.792 0.792 0.793

25 (3089, 4000, 4) - - - -

26 (1243, 41, 22) - - - -

27 (2477, 47272, 300) 0.577 0.578 0.578 0.560

28 (3470, 46279, 300) 0.601 0.601 0.601 0.618

29 (4912, 44837, 300) 0.637 0.636 0.639 0.651
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From the Tables 3-5, in 5 datasets we got the same results for the amount support vectors,

accuracy, balanced accuracy and ϕ coefficient (Ids 2, 4, 7, 15, 21). Also, although all algorithms

converged to similar points, they did not performed well in Id-22 and Id-15 datasets to the values

selected for γ and C hyper-parameters. In both cases were selected all samples in the training phase

as support vectors, meanwhile having a competitive accuracy and ϕ coefficient. For the Id-25 and

Id-26 datasets we cannot compute the values from balanced accuracy and ϕ coefficient, because all

the algorithms did not predict any TN and FN in this run. This is justified by the non-balanced class

proportion in the training phase.

Taking into account our draw criteria and the results from Table 6, only in 5 datasets Filter-

A and Filter-B got lower metric values than LIBSVM (Ids 1, 5, 14, 16, 25 and Ids 5, 14, 16, 25,

respectively) and only 3 times Filter-A got lower values than quadprog (Ids 1, 10, 25). Filter-B had

no lower values than quadprog in this experiment by the draw criteria. Figure 3 illustrate the MIR

differences for each dataset.
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Table 6 – Misclassification instances rate percentage and differences of Filter-A, Filter-B, quad-

prog and LIBSVM with RBF kernel function. In the table, “A = Filter-A”, “B = Filter-B”,

“C=quadprog” and “D=LIBSVM”

MIR (%) Absolute differences between methods (%)
Id

A B C D |A-B| |A-C| |A-D| |B-C| |B-D| |C-D|

1 25.362 21.739 21.739 20.290 3.623 3.623 5.072 0.000 1.449 1.449

2 13.043 13.043 13.043 13.043 0.000 0.000 0.000 0.000 0.000 0.000

3 5.147 5.147 5.147 5.147 0.000 0.000 0.000 0.000 0.000 0.000

4 25.000 25.000 25.000 25.000 0.000 0.000 0.000 0.000 0.000 0.000

5 26.144 26.144 26.144 29.412 0.000 0.000 3.268 0.000 3.268 3.268

6 26.797 26.797 26.797 24.837 0.000 0.000 1.961 0.000 1.961 1.961

7 12.500 12.500 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000

8 0.581 0.581 0.581 0.000 0.000 0.000 0.581 0.000 0.581 0.581

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 21.000 24.500 25.500 22.500 3.500 4.500 1.500 1.000 2.000 3.000

11 23.500 23.500 25.000 24.000 0.000 1.500 0.500 1.500 0.500 1.000

12 18.519 18.519 18.519 18.519 0.000 0.000 0.000 0.000 0.000 0.000

13 11.111 11.111 11.111 11.111 0.000 0.000 0.000 0.000 0.000 0.000

14 10.000 11.429 11.429 7.143 1.429 1.429 2.857 0.000 4.286 4.286

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 9.756 9.756 9.756 7.317 0.000 0.000 2.439 0.000 2.439 2.439

17 16.950 16.953 16.953 15.570 0.003 0.003 1.379 0.000 1.383 1.383

18 17.095 17.081 17.098 15.830 0.013 0.003 1.264 0.017 1.251 1.267

19 17.228 17.228 17.256 16.541 0.000 0.027 0.688 0.027 0.688 0.715

20 16.220 16.224 16.206 15.450 0.004 0.014 0.770 0.018 0.774 0.756

21 17.647 17.647 17.647 17.647 0.000 0.000 0.000 0.000 0.000 0.000

22 31.667 31.667 31.667 31.667 0.000 0.000 0.000 0.000 0.000 0.000

23 10.805 10.805 10.805 9.655 0.000 0.000 1.149 0.000 1.149 1.149

24 10.483 10.483 10.483 10.345 0.000 0.000 0.138 0.000 0.138 0.138

25 1.450 1.450 1.450 1.350 2.439 2.439 2.439 0.000 4.878 4.878

26 21.951 19.512 19.512 24.390 0.000 0.000 0.100 0.000 0.100 0.100

27 2.291 2.278 2.278 2.318 0.013 0.013 0.028 0.000 0.040 0.040

28 2.146 2.146 2.137 1.886 0.000 0.009 0.259 0.009 0.259 0.251

29 2.007 2.012 1.972 1.762 0.004 0.036 0.245 0.040 0.250 0.210
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Figure 3 – MIR absolute differences for all datasets. In the figure, “A = Filter-A”, “B = Filter-B”,

“C=quadprog” and “D=LIBSVM”

Source: Elaborated by the authors.

Thus, we can conclude that Filter-A and Filter-B were competitive with quadprog and LIBSVM

for the metrics of classification performance. Now we will analyze the runtime for the algorithms.

Table 3 contains the values of cpu-time in the test phase, while in Figure 4 we show the CPU-

time performance profile, for the algorithms applied in all 29 datasets. The Filter-B algorithm solves

100% of problems, being the fastest in 58.6% of them. LIBSVM solves 100% of problems, but

fastest in 37.9% of them. The worst performance, in relation of cpu-time, was quadprog and Filter-A,

respectively.

Figure 4 – Performance profile: cpu training time

Source: Elaborated by the authors.
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Figure 4 accentuate the efficiency of the proposed Filter-B. The main reason of that good

performance of Filter-B in detriment of Filter-A is that Filter-B solved datasets with a sparse/low

density structures and non-balanced training class proportion faster, such as Ids 15, 17, 18, 19, 20,

25, 26, 27, 28, 29. Filter-A and Filter-B differs in how subproblem (14) was solved, which means that

[34] was more efficient to provide better train time results than quadprog.

As shown, the Filter-SQP method is a promising alternative SVM training, offering a reliable

and efficient solution for optimization. With a guarantee of convergence in its optimization, the Filter-

B proves to be a solid choice for handling SVM problems. By adopting the Filter-SQP, specially the

case of Filter-B, practitioners of SVM can benefit from a dependable and stable approach, avoiding

common convergence pitfalls and improving training efficiency. Additionally, the Filter-B offers a high

level of flexibility, adapting to different datasets and SVM configurations. Thanks to the guarantee of

convergence, users can trust the consistency and accuracy of the results obtained by the Filter-SQP.

This provides greater confidence in choosing this method as a reliable alternative for SVM training,

regardless of the size or complexity of the problem at hand.

5 Conclusions

In this paper we propose a Filter algorithm applied to SVM binary classification problem, ap-

plying a SQP method for the filter step computation. The SQP method makes possible to apply

any Hessian approximation for the quadratic Lagrangian approximation of SVM problem, but in the

numerical experiments we choose to compute the exact Hessian of the quadratic Lagrangian approx-

imations. Filter-A and Filter-B offers several advantages for solving the feasibility step in Filter-SQP

method. Firstly, Filter-SQP is known for its robustness and efficiency in handling constraints. By

incorporating a filter mechanism, it effectively manages the constraint violation and feasibility issues,

ensuring that the solutions satisfy the imposed constraints. However, there are certain limitations

and trade-offs associated with using the Filter-SQP. One notable disadvantage is the computational

complexity, especially when dealing with large-scale and sparse optimization problems. In this paper,

we used two approachs (quadprog and Augmented Lagrangian) to solve the viability step. The Aug-

mented Lagrangian method introduces additional variables and penalty terms, which can significantly

increase the computational burden. Furthermore, the reliance on quadprog as the underlying solver

may restrict the applicability of the method to specific problem formulations and constraints. It is

essential to consider the problem size, complexity, and available computational resources when de-
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ciding to employ the Filter-A and Filter-B. In order to compare the algorithms, we have implemented

them in MATLAB® and performed extensive numerical tests with 29 datasets selected from the LIB-

SVM collection. The algorithms that we have used to calculate the step and the filter criteria have

given rise to two variants of the Filter-SQP algorithm. The prediction/test phase have showed a sig-

nificant difference between these two variants in cpu-time in training phase only, with the Filter-SQP

with the Augmented Lagrangian based method for the computation of feasibility step being faster. For

the speed, accuracy, balanced accuracy and Matthews correlation coefficient, the Filter algorithms

got competitive results compared to LIBSVM and quadprog. In summary, the Filter-SQP method

presents itself as a highly viable and promising solution for SVM training, ensuring convergence in its

optimization. Its reliability, efficiency, and ability to handle a variety of scenarios make it an attractive

alternative for those seeking to maximize the performance and accuracy of their SVM models.
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