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Abstract
This article aims to compare the results obtained by ap-
plying three numerical methods: Explicit Euler, Crank-
Nicolson,and Multi-stage (R11), in the one-dimensional
heat diffusion transient equation with different initial and
boundary conditions. The discretization process was
performed using the finite difference method. In or-
der to guarantee the convergence of the methods used,
consistency and stability were verified by Lax theorem.
The results are presented in graphs and tables that
contain the data of the analytical solution and the nu-
merical solutions. It was observed that the results ob-
tained by R11 method generated solutions with minor
errors.
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Palavras-Chave
Modelo Matemático
Método de Diferenças Finitas
Convergência

Resumo
Este artigo tem por objetivo comparar os resultados
obtidos pela aplicação de três métodos numéricos: Eu-
ler Explı́cito, Crank-Nicolson e Multi-estágio (R11), na
equação transiente da difusão do calor unidimensional
com dife-rentes condições iniciais e de contorno. O
processo de discretização foi realizado pelo método de
diferenças finitas. Para garantir a convergência dos
métodos utilizados foi verificada a consistência e a es-
tabilidade pelo Teorema de Lax. Os resultados são
apresentados em gráficos e tabelas que contêm da-
dos da solução analı́tica e das soluções numéricas.
Observou-se que os resultados obtidos pelo método
R11 gerou soluções com menores erros.

1 Introduction

The transient heat diffusion equation is a linear partial differential equation (PDE) of first-

order in time and second-order in space. Transient problems involve the temporal variation of the

physical quantities of interest. From the initial and contour values of these quantities,the PDE solution

calculates their values in successive time intervals (FORTUNA, 2012).

In this article, we consider the problem of finding numerical solutions for the one-dimensional

heat diffusion equation in transient regime with different initial and boundary conditions, described

mathematically by

ut − α(x, t)uxx = r(x, t) u(x, t) ∈ Ω× (0, T ) (1)

u(x, 0) = f(x) (2)

u(x, t) = φ(x, t) (x, t) ∈ ∂Ω× (0, T ), (3)

so that α(x, t) represents thermal diffusivity (BOYCE; DIPRIMA, 1985, FORTUNA, 2012), Ω = [0, L]

is the spatial domain, and (0, T ) is the temporal domain. The functions r(x, t), f(x) and φ(x, t)

describe the source term and the initial and boundary conditions, respectively.

In recent years, several computational techniques were developed to obtain numerical solu-

tions of PDEs. This approach consists of transforming continuous problems into discrete problems,

involving both the equation of interest and the geometric domain of solutions. In the latter, the trans-

formation consists of the decomposition of a continuous region into a finite set of points. Then, the
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equations of interest must be written in the form of arithmetic operations, depending on the discretized

domain.

Several methods in the literature can be used to obtain numerical solutions to PDEs, such as

the methods developed in Horváth (2002), Kadalbajoo and Awasthi (2006), Wang, Nakagawa and

Yamamoto (2010), Ladeia et al. (2013), Gu et al. (2018), Hajipour et al. (2018), Kazen and Dehghan

(2018) and Saita et al. (2018). In this article, three methods will be particularly addressed: the Explicit

Euler method, Crank-Nicolson (CN), and Multi-stage (R11), which are found in Faragó and Palencia

(2002), Araújo and Márquez (2012) and Pereira, Lisboa and Dias Filho (2017). The objective is to

verify which method produces numerical solutions closer to analytical solutions. Based on the results

obtained, error analysis will be carried out, as well as the time taken to process the solutions. The

convergence of the methods is verified through Lax theorem.

The article is accomplished as follows: in section 2, the model discretization process, equa-

tion (1), is carried out using the finite difference method. Section 3 presents the convergence theory

of numerical methods. In section 4, the convergence analysis (consistency and stability) of the R11

method is verified. Section 5 presents the results obtained in this article. Finally, some considerations

are drawn in section 6.

2 Numerical model

The geometric domain of solutions, defined in this article, is a region of length [0, L] in the

spatial domain x, and an interval (0, T ) in the temporal domain t. Dividing the interval (0, L) into Mx

equal parts in length ∆x, there is Mx + 1 points xi = i∆x, with i = 1, . . . ,Mx, so that ∆x = L/Mx.

Similarly, dividing the interval (0, T ) into Mt equal parts in length ∆t, it results in Mt + 1 points

tj = j∆t, with j = 1, . . . ,Mt, so that ∆t = T/Mt. Thus, the approximations of the differential terms in

equation (1) must be performed according to the points of the discretized geometric domain defined

by the set:

(xi, tj) = (x0 + i∆x, y0 + j∆t) with i = 1, . . . ,Mx and j = 1, . . . ,Mt, (4)

in which (x0, y0) represents the origin of the geometric domain of solutions.

In this article, uij is denoted as the analytical solution at point (xi, tj) and for Uij as the

numerical approximate value of uij .
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The equation (1) is discretized by the finite difference method, given by

U j+ni − Uk+m
i

∆t/s
= σ

(
α
U j+1
i−1 − 2U j+1

i + U j+1
i+1

∆x2

)
+ (1− σ)

(
α
U ji−1 − 2U ji + U ji+1

∆x2

)
+ rji . (5)

In the model discretization process, α(x, t) was considered constant. In (5), in case that σ = 0,

s = 1, n = 1, k = j and m = 0, the Explicit Euler method is obtained. If σ = 1/2, s = 1, n = 1, k = j

and m = 0, the Crank-Nisolcon method is obtained. If σ = 0, s = 2, n = 1/2, k = j and m = 0, or

if σ = 1, s = 2, n = 1, k = j and m = 1/2, the explicit and implicit stages of the R11 method are

obtained, respectively.

3 Convergence

When numerically solving a PDE, it is necessary that the numerical solution approaches the

analytical solution (FORTUNA, 2012). To obtain the approximate solution, the number of operations

depends on the ∆x and ∆t partitions. From a computational point of view, the lower the values of ∆x

and ∆t, the closer the numerical solution will be to the analytical solution; however, the number of

operations done by the computer rises. This approximation process can generate an accumulation

of uncontrolled errors, characterizing a numerical method as stable or unstable.

To ensure that the numerical solution is as close as possible to the real solution of the pro-

blem, it is necessary and sufficient that the conditions established by Lax’s theorem are satisfied

(FORTUNA, 2012, CUMINATO; MENEGUETTE, 2013), that is:

Theorem 3.1. A necessary and sufficient condition for the convergence of a numerical method, when

applied to a well-posed initial value problem, is that the discretization scheme is consistent and stable.

In this context, this section presents the theory of consistency and stability of numerical

methods.

3. 1 Consistency

When the derivatives of a PDE are replaced by finite difference formulae, a finite difference

equation (FDE) and an associated error are obtained, so that the PDE analytical solution does not

satisfy the FDE precisely. This error is defined as Local Truncation Error (LTE) and appears due to

the use of a finite amount of terms while expanding a function in Taylor series (FORTUNA, 2012,

CUMINATO; MENEGUETTE, 2013).
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To show that a FDE is consistent with PDE, consider the ∆x, ∆t → 0 partitions. If LTE

also tends to zero, then FDE is said to be consistent with PDE (FORTUNA, 2012, CUMINATO;

MENEGUETTE, 2013).

3. 2 Stability

A numerical method is said to be stable when errors and disturbances in the solution are not

amplified endlessly. One of the most used techniques in the study of the stability of finite difference

equations is the Von Neumann criterion, which consists of expanding the Local Truncation Error Eni

in Fourier series, as follows:

Eni =
∑
j

φnj e
IQxi , (6)

where I =
√
−1 and for the j−th component, φnj is its amplitude at time n and Q its wave number

(CUMINATO; MENEGUETTE, 2013).

4 Convergence Analysis

In this section, the consistency and stability of the R11 method are checked. For that, Taylor

series expansion is employed to show consistency and Von Neumann criterion to determine the

stability region, as discussed in subsection 3. 1 and 3. 2, respectively. For the other methods, Explicit

Euler and Crank-Nicolson, the convergence analysis is reviewed in Fortuna (2012), and Cuminato

and Meneguette (2013).

4. 1 Consistency of the explicit stage of the R11 method

The consistency analysis presented in this subsection is performed for the explicit stage of

the R11 method. For the implicit stage, the analysis is analogous and will not be presented.

Without loss of generality, consider in the equation (1) the thermal diffusivity term α(x, t) as

constant and the source term r(x, t) equal to zero, that is:

ut = αuxx. (7)

The explicit stage of the R11 method is given by:
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U
j+ 1

2
i = (1− γ)U ji +

γ

2

(
U ji−1 + U ji+1

)
, (8)

with γ =
α∆t

(∆x)2
.

Expanding in Taylor series the spatial component of U ji+1 and U ji−1, given in (8), we obtain:

U ji±1 = U ji ±∆x
∂

∂x
U ji ±

∆x2

2!

∂2

∂x2
U ji ±

∆x3

3!

∂3

∂x3
U ji ±O(∆x4), (9)

so that O(∆x4), represents the upper and equal terms to the fourth order in the expansion in Taylor

series.

Similarly, performing the Taylor series expansion in the time component of U
j+ 1

2
i , given in (8),

it becomes:

U
j+ 1

2
i = U ji +

∆t

4

∂

∂t
U ji +

∆t

4

∂

∂t

(
U ji +

∆t

2

∂

∂t
U ji

)
+O

(
∆t

2

)3

, (10)

so that O
(

∆t
2

)3 represents the upper and equal terms of the third order in the expansion in Taylor

series.

Yet, the expansion (10) deserves further consideration. Note that the term U
j+ 1

2
i can be

rewritten in the form

U
j+ 1

2
i ≈ U ji +

∆t

2

∂

∂t
U ji , (11)

which comes from the discretization of the temporal term by the regressive finite difference formula,

at time levels j e j + 1
2 . Thus, replacing (11) in (10) we get the approximate equation:

U
j+ 1

2
i = U ji +

∆t

4

∂

∂t
U ji +

∆t

4

∂

∂t
U
j+ 1

2
i +O

(
∆t

2

)3

. (12)

On the other hand, applying the finite difference formula centred on the term
∂

∂t
U
j+ 1

2
i of (12),

encounter:
∂

∂t
U
j+ 1

2
i ≈

U j+1
i − U ji

∆t
. (13)

In addition, the term U
j+ 1

2
i is an arithmetic mean between the time levels j and j + 1, thus

U
j+ 1

2
i =

U j+1
i + U ji

2
, so U j+1

i = 2U
j+ 1

2
i − U ji . Substituting the equality of U j+1

i in (13), we have:

∂

∂t
U
j+ 1

2
i ≈

2U
j+ 1

2
i − 2U ji

∆t
. (14)
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Replacing (14) in (12), the approximate equation follows:

U
j+ 1

2
i = U ji +

∆t

4

∂

∂t
U ji +

∆t

4

(
2U

j+ 1
2

i − 2U ji
∆t

)
+O

(
∆t

2

)3

. (15)

Grouping the common terms in (15), and simplifying equation:

U
j+ 1

2
i = U ji +

∆t

2

∂

∂t
U ji + 2O

(
∆t

2

)3

. (16)

Finally, replacing the expansions (9) and (16) in (8), as well as some algebraic manipulations,

we obtain:
∂

∂t
U ji − α

∂2

∂x2
U ji︸ ︷︷ ︸

PDE

= −4O
(

∆t

2

)2

+ 2αO(∆x)2.︸ ︷︷ ︸
LTE

(17)

Making ∆x, ∆t → 0 in (17), the LTE tends to zero, leaving only the finite difference equation

applied to a point in the mesh, that is

∂

∂t
U ji = α

∂2

∂x2
U ji . (18)

Therefore, from (18), it is concluded that the first stage of the R11 method is consistent.

4. 2 Stability of the R11 method

To find the stability region of the R11 method, the Von Neumann criterion is used, as dis-

cussed in the subsection 3. 2.

Consider the explicit stage of the R11 method, given by

U
j+ 1

2
i = (1− γ)U ji +

γ

2

(
U ji−1 + U ji+1

)
, (19)

with γ =
α∆t

(∆x)2
.

Initially, each term of (19) is replaced by its equivalent Fourier series, like (6), that is

U
j+ 1

2
i = φj+

1
2 eIQxi , (20)

U ji = φjeIQxi , (21)

U ji±1 = φjeIQ(xi±∆x) = φjeIQxie±IQ∆x. (22)
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Substituting (20)-(22) in (19), we have

φj+
1
2 eIQxi = (1− γ)φjeIQxi +

γ

2

(
φjeIQxie−IQ∆x + φjeIQxieIQ∆x

)
. (23)

As eIQ∆x + e−IQ∆x = 2 cos(Q∆x), performing some algebraic manipulations in (23), it follows

that:

φj+
1
2

φj
= 1 + γ

(
cos (Q∆x)− 1

)
. (24)

Establishing the criterion of stability in (24):

∣∣∣∣φj+ 1
2

φj

∣∣∣∣ =

∣∣∣∣1 + γ
(

cos (Q∆x)− 1
)∣∣∣∣ ≤ 1, (25)

that is,

1 + γ
(

cos (Q∆x)− 1
)
≤ 1, (26)

1 + γ
(

cos (Q∆x)− 1
)
≥ −1. (27)

The inequality (26) is always satisfied, because when considering the maximum and minimum

points of cos(Q∆x), we find γ > 0. On the other hand, from the second inequality (27), assuming the

maximum and minimum points of cos(Q∆x), we find γ ≤ 1. Thus, a condition is initially found in the

explicit stage is 0 < γ ≤ 1.

Subsequently, we must analyze the stability conditions for the implicit stage of the R11 method,

given by:

U j+1
i = U

j+ 1
2

i +
γ

2

(
U j+1
i−1 − 2U j+1

i + U j+1
i+1

)
, (28)

with γ =
α∆t

(∆x)2
.

Replacing each term of the implicit stage of the R11 method by its equivalent Fourier series,

as (6), we obtain:

U
j+ 1

2
i = φj+

1
2 eIQxi , (29)

U j+1
i = φj+1eIQxi , (30)

U j+1
i±1 = φj+1eIQ(xi±∆x) = φj+1eIQxie±IQ∆x. (31)
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Replacing (29)-(31) in (28), it follows that:

φj+1eIQxi = φj+
1
2 eIQxi +

γ

2

(
φj+1eIQxie−IQ∆x − 2φj+1eIQxi + φj+1eIQxieIQ∆x

)
. (32)

As eIQ∆x + e−IQ∆x = 2 cos(Q∆x), while some algebraic manipulations in (32), we obtain:

φj+
1
2

φj+1
= 1− γ

(
cos (Q∆x)− 1

)
. (33)

Establishing the stability criterion at (33):∣∣∣∣∣φj+
1
2

φj+1

∣∣∣∣∣ =

∣∣∣∣1− γ( cos (Q∆x)− 1

)∣∣∣∣ ≤ 1, (34)

that is,

1− γ (cos (Q∆x)− 1) ≤ 1, (35)

1− γ (cos (Q∆x)− 1) ≥ −1. (36)

The inequalities (35) and (36) are always true when analyzing the maximum and minimum

points of cos(Q∆x). Thus, for the R11 method to be a stable method, one must consider the condi-

tions imposed in the explicit stage. Therefore, according to Lax theorem, the R11 method is conver-

gent, as long as the condition 0 <
α∆t

(∆x)2
≤ 1 is respected.

Finally, the stability conditions to Explicit Euler, Crank-Nicolson and R11 methods are evalu-

ated by following expressions:

ΦExp-Euler = 1 + 2γ(cos(Q∆x)− 1) (Explicit Euler) (37)

ΦCN =
1 + γ(cos(Q∆x)− 1)

1− γ(cos(Q∆x)− 1)
(Crank-Nicolson) (38)

ΦR11 = 1 + γ(cos(Q∆x)− 1) (R11) (39)

Table 1 shows, the stability criteria of the Explicit Euler, Crank-Nicolson and R11 methods, as

well as their convergence orders.

As indicated in Table 1 the Explicit Euler and R11 methods are conditionally stable, while

the Crank-Nicolson method is unconditionally stable. Figure 1 illustrates the stability region of these

methods in the interval r = [0.25, 0.75].
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Figure 1 – Stability region: (a) Explicit Euler method; (b) Crank-Nicolson method; (c) R11 method.

(a)

(b)

(c)

Source: The authors.
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Table 1 – Stability interval and order of convergence of the methods.
R11 Crank-Nicolson Explicit Euler

method method method
Stability Convergence Stability Convergence Stability Convergence

order order order

γ ∈ (0, 1] O(∆t/2)2 γ ∈ (0,∞) O(∆t)2 γ ∈ (0, 0.5] O(∆t)
O(∆x)2 O(∆x)2 O(∆x)2

Source: The authors.

5 Results

All the results presented in this section come from the application of the numerical methods

previously presented in model (1)-(3), for different initial and boundary conditions, in which the nume-

rical solutions will be compared with the analytical solutions of the following examples. The spatial

and temporal convergence orders of the methods used will also be presented.

5. 1 Exemple 1

Considering the domain 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, the one-dimensional model of heat diffusion

(1)-(3), where the initial condition

u(x, 0) = 100sen(πx), (40)

and the boundary conditions of the Dirichlet type

u(0, t) = 0,

u(1, t) = 0,
(41)

have the analytical solution given by (CUMINATO; MENEGUETTE, 2013):

u(x, t) = 100e−π
2tsen(πx). (42)

Thus, given the equation (1), and using the initial and boundary conditions, equations (40)-

(41), Figure 2 presents the solutions obtained by the numerical methods: Euler Explicit, Crank-

Nicolson and R11, along with the analytical solution, when Mx = 40, Mt = 3200 and γ = 0.5.

From Figure 2(a)-(d), it is observed that the numerical solutions present, qualitatively, the

same behavior of the analytical solution. As a way of assessing how close the numerical solutions

are to the analytical solution, Figure 3 shows the behavior of the approximation errors of the numerical

methods.
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Figure 2 – Analytical and numerical solutions: (a) Analytical; (b) Explicit Euler; (c) Crank-Nicolson;
(d) R11 method.

(a) (b)

(c) (d)

Source: The authors.

Figure 3 – Approximation errors of numerical methods in the problem domain: (a) Explicit Euler
method; (b) Crank-Nicolson method; (c) R11 method.

(a) (b) (c)

Source: The authors.

From the results presented in Figure 3, It is observed that the numerical methods Euler Ex-

plicit, Figure 3(a), Crank-Nicolson, Figure 3(b) and R11, Figure 3(c), reached the following maximum

approximation error values: 3.7864× 10−2, 1.8882×10−2 and 9.4579×10−3, respectively.

REMAT, Bento Gonçalves, RS, Brasil, v. 7, n. 1, p. e3012, April 20, 2021.
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The R11 method had the lowest error values, while the Explicit Euler method had the highest

values. Note that the results presented were obtained for γ = 0.5, that is, at the limit of the stability

region of the Explicit Euler method (FORTUNA, 2012, CUMINATO; MENEGUETTE, 2013).

For a more detailed assessment of the characteristics of the methods employed, we set

Mx = 10 and vary Mt, so that γ is within the stability region. The results are presented in Table 2

for the point x = 0.5, at the time level t = 1. The relative error Eij for the calculation of the temporal

convergence order, denoted by pt, and the processing time of the solutions are also displayed.

Table 2 – Numerical solutions for Mx = 10, in x = 0.5 and t = 1 for several Mt values. The analytical
solution is u(0.5, 1) = 5.1723× 10−3.

γ Mt Uij Eij pt cpu (s)

Explicit Euler
method

0.5 200 4.3779×10−3 4.6106×10−1 0.90194 0.11427
0.25 400 4.9653×10−3 4.0020×10−2 0.95192 0.10055

0.125 800 5.2796×10−3 2.0745×10−2 0.97619 0.13868
0.0625 1600 5.4421×10−3 5.2162×10−2 0.98816 0.15446
0.03125 3200 5.5247×10−3 6.8132×10−2 0.21561

0.015625 6400 5.5663×10−3 7.6175×10−2 0.34460
R11

method
1 100 4.3779×10−3 1.5359×10−1 1.8332 0.63517

0.5 200 4.9653×10−3 4.0020×10−2 1.9184 0.30289
0.25 400 5.2796×10−3 2.0745×10−2 1.9596 0.47587

0.125 800 5.4421×10−3 5.2162×10−2 1.9799 1.45370
0.0625 1600 5.5247×10−3 6.8132×10−2 1.9899 20.3880
0.03125 3200 5.5663×10−3 7.6180×10−2 37.0212

0.015625 6400 5.5872×10−3 8.0215×10−2 71.0903
Crank-Nicolson

method
2 50 5.4345×10−3 5.0693×10−2 1.9866 0.11617
1 100 5.5645×10−3 7.5827×10−2 1.9967 0.10966

0.5 200 5.5972×10−3 8.2149×10−2 1.9992 0.33389
0.25 400 5.6055×10−3 8.3754×10−2 1.9998 0.21327

0.125 800 5.6075×10−3 8.4141×10−2 1.9999 0.20511
0.0625 1600 5.6081×10−3 8.4257×10−2 2.0000 0.30775
0.03125 3200 5.6081×10−3 8.4257×10−2 0.76860

0.015625 6400 5.6082×10−3 9.8544×10−2 1.76060

Source: The authors.
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Similarly, Mt = 25600 is fixed and Mx is variable. The results are presented in Table 3, as

well as the relative error for the calculation of the spatial convergence order, denoted by px, and the

processing time of the solutions.

Table 3 – Numerical solutions for Mt = 25600, in x = 0.5 and t = 1 for several Mx values. The
analytical solution is u(0.5, 1) = 5.1723 ×10−3.

γ Mx Uij Eij px cpu (s)

Explicit Euler
method

0.0039 10 5.5977×10−3 1.5558×10−1 2.0505 0.11427
0.0156 20 5.2682×10−3 1.8541×10−2 2.0126 0.10055
0.0625 40 5.1887×10−3 3.1707×10−3 0.13868
0.2500 80 5.1690×10−3 6.3801×10−4 0.15446

R11
method

0.0039 10 5.6029×10−3 8.3256×10−2 2.0499 594
0.0156 20 5.2733×10−3 1.0639×10−2 2.0073 1287
0.0625 40 5.1937×10−3 4.1374×10−3 2.0000 2530
0.2500 80 5.1739×10−3 3.1719×10−4 5018
1.0000 160 5.1690×10−3 6.3801×10−4 14849

Crank-Nicolson
method

0.0039 10 5.6082×10−3 8.4276×10−2 2.0516 190
0.0156 20 5.2782×10−3 2.0474×10−2 2.0073 459
0.0625 40 5.1986×10−3 5.0848×10−3 2.0000 1419
0.2500 80 5.1788×10−3 1.2567×10−3 4464
1.0000 160 5.1735×10−3 2.3201×10−4 18753

Source: The authors.

The R11 method has a greater stability region than the Explicit Euler method. In this context,

while the Explicit Euler method obtained the result of U(0.5, 1) = 4.3779×10−3 (see Table 2) for a

temporal refinement of Mt = 200, the R11 method obtained the same result; however, for a minor

temporal refinement, that is, Mt = 100. The Crank-Nicolson method, on the other hand, presented

results close to the analytical solution, obtaining relative errors in the order of 10−2, although the

approximation error increases as time is refined. This propagation of errors, in general, is corrected

when space is also refined, according to the data presented in Table 3.

Regarding the estimated order of convergence pt and px, it appears that they are consistent

with the order of analytical convergence as shown in Table 1, that is, both Crank-Nicolson and R11

method have a second-order in time and space, while the Explicit Euler method has a first-order in
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time and the second-order in space. Also, in all analyses, the Explicit Euler method obtained the

shortest computational time, since this method does not require the resolution of a system of linear

equations.

The analyses presented above were performed for a single specific point in the mesh. Now, to

analyze the influence of all points of the mesh in obtaining the results, the spatial domain is discretized

to Mx = 10, 20, 40 and 80, which represent ∆x = 0.1, 0.05, 0.025, 0.0125, respectively, and the relative

errors L2 and L∞ are calculated on the different meshes. The numerical results Figure 4 improve

considerably when the number of elements in the mesh is increased.

Figure 4 – Errors in norms L2 and L∞: (a) Explicit Euler method; (b) Crank-Nicolson method; (c) R11
method.

(a) (b) (c)

Source: The authors.

The R11 method produces numerical solutions with fewer error, as previously analyzed at

point x = 0.5 in t = 1, with γ within its stability region. From the results presented in Figure 3, it is

possible to indicate that this situation extends to all points of the mesh.

5. 2 Exemple 2

As shown in Example 1, the R11 method produces numerical solutions that are closer to the

analytical solution. In this example, it will be analyzed for which values of γ this method produces

fewer numerical errors. For this, the model (1) is considered with the initial condition

u(x, 0) =
(
x− 1

3

)6
, (43)
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and the boundary conditions

u(0, t) = 0.0014et,

u(1, t) = 0.0878et.
(44)

The analytical solution to model (1), satisfing the conditions (43)-(44), is given by (GAO; SUN,

2012):

u(x, t) =
(
x− 1

3

)6
et. (45)

Similarly, considering the domain 0 ≤ x ≤ 1 e 0 ≤ t ≤ 1, Figure 5(a)-(b) presents the analytical

solution (45) and numerical solutions obtained by the R11 method, along with the approximation

errors, Figure 5(c), for Mx = 40, Mt = 3200, and γ = 0.5.

Figure 5 – Solutions to one-dimensional heat diffusion equation (1) with initial and boundary condi-
tions given by (43)-(44): (a) Analytical solution, equation (45); (b) R11 method; (c) Approxi-
mation errors of R11 method in the problem domain.

(a) (b)

(c)

Source: The authors.

In regard to Figure 5, the R11 method produced similar results to the analytical solution’s,

with an absolute error in the order of 10−4. To check for which values of γ the R11 method produces
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fewer errors, we set Mx = 20 and vary Mt. The respective values of γ and the error at point x = 0.5

in t = 1 are shows in Figure 6.

Figure 6 – Behavior of the error produced by the R11 method, in the solution of the model (1), (43)
and (44), for different values of γ.

Source: The authors.

In Figure 6 the error is decreasing proportionally with γ values, that is, the lower the value of

γ, fewer the error. On the other hand, when γ approaches the value that delimits its region of stability,

the error of R11 method increase.

6 Conclusions

This article aimed to verify which of the methods: Euler Explicit, Crank-Nicolson and R11, pro-

duced results with lower numerical errors when used in the one-dimensional heat diffusion equation

for different initial and boundary conditions.

In the examples presented, it was found that the R11 method was the numerical method that

produced solutions with the least approximation error. When comparing this method with the others,

it halves the number of calculations performed to obtain the numerical solution. This is due to the

characteristic of the method that calculates the solution using two stages, that is, it uses time intervals

∆t/2, therefore, the time refinement is less than the refinement of the other methods. On the other

hand, the R11 method, as well as the Crank-Nicolson method, requires the iterative resolution of

a system of linear equations. Thus, the processing time of its numerical solutions is longer when

compared to the processing time of the Explicit Euler method.
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The numerical approach conducted in this article did not require much computational effort in

processing the solutions. In this context, it is concluded that, for the evaluated examples, the R11

method proved to be superior to the Explicit Euler and Crank-Nicolson methods.
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